Weiyu Liu, Yilun Du, Tucker Hermans, S. Chernova, Chris Paxton
{"title":"StructDiffusion: Language-Guided Creation of Physically-Valid Structures using Unseen Objects","authors":"Weiyu Liu, Yilun Du, Tucker Hermans, S. Chernova, Chris Paxton","doi":"10.15607/RSS.2023.XIX.031","DOIUrl":null,"url":null,"abstract":"Robots operating in human environments must be able to rearrange objects into semantically-meaningful configurations, even if these objects are previously unseen. In this work, we focus on the problem of building physically-valid structures without step-by-step instructions. We propose StructDiffusion, which combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals, such as\"set the table\". Our method can perform multiple challenging language-conditioned multi-step 3D planning tasks using one model. StructDiffusion even improves the success rate of assembling physically-valid structures out of unseen objects by on average 16% over an existing multi-modal transformer model trained on specific structures. We show experiments on held-out objects in both simulation and on real-world rearrangement tasks. Importantly, we show how integrating both a diffusion model and a collision-discriminator model allows for improved generalization over other methods when rearranging previously-unseen objects. For videos and additional results, see our website: https://structdiffusion.github.io/.","PeriodicalId":248720,"journal":{"name":"Robotics: Science and Systems XIX","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2023.XIX.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Robots operating in human environments must be able to rearrange objects into semantically-meaningful configurations, even if these objects are previously unseen. In this work, we focus on the problem of building physically-valid structures without step-by-step instructions. We propose StructDiffusion, which combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals, such as"set the table". Our method can perform multiple challenging language-conditioned multi-step 3D planning tasks using one model. StructDiffusion even improves the success rate of assembling physically-valid structures out of unseen objects by on average 16% over an existing multi-modal transformer model trained on specific structures. We show experiments on held-out objects in both simulation and on real-world rearrangement tasks. Importantly, we show how integrating both a diffusion model and a collision-discriminator model allows for improved generalization over other methods when rearranging previously-unseen objects. For videos and additional results, see our website: https://structdiffusion.github.io/.