Forecasting Crowd Distribution in Smart Cities

Alket Cecaj, Marco Lippi, M. Mamei, F. Zambonelli
{"title":"Forecasting Crowd Distribution in Smart Cities","authors":"Alket Cecaj, Marco Lippi, M. Mamei, F. Zambonelli","doi":"10.1109/SECONWorkshops50264.2020.9149774","DOIUrl":null,"url":null,"abstract":"In this work we present a forecasting method that can be used to predict crowd distribution across the city. Specifically, we analyze and forecast cellular network traffic and estimate crowd on such basis. Our forecasting model is based on a neural network combined with time series decomposition techniques. Our analysis shows that this approach can give interesting results in two directions. First, it creates a forecasting solution that fits all the variability in our dataset without having to create specific features and without complex search procedures for optimal parameters. Second, the method performs well, showing to be robust even in the presence of spikes in the data thus enabling better applications such as event management and detection of crowd gathering.","PeriodicalId":341927,"journal":{"name":"2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECONWorkshops50264.2020.9149774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work we present a forecasting method that can be used to predict crowd distribution across the city. Specifically, we analyze and forecast cellular network traffic and estimate crowd on such basis. Our forecasting model is based on a neural network combined with time series decomposition techniques. Our analysis shows that this approach can give interesting results in two directions. First, it creates a forecasting solution that fits all the variability in our dataset without having to create specific features and without complex search procedures for optimal parameters. Second, the method performs well, showing to be robust even in the presence of spikes in the data thus enabling better applications such as event management and detection of crowd gathering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智慧城市人群分布预测
在这项工作中,我们提出了一种预测方法,可用于预测整个城市的人群分布。具体而言,我们在此基础上分析和预测蜂窝网络流量并估计人群。我们的预测模型是基于神经网络结合时间序列分解技术。我们的分析表明,这种方法可以在两个方向上得到有趣的结果。首先,它创建了一个预测解决方案,适合我们数据集中的所有可变性,而无需创建特定的特征,也无需为最佳参数进行复杂的搜索过程。其次,该方法性能良好,即使在数据中存在峰值时也表现出鲁棒性,因此可以实现更好的应用程序,例如事件管理和人群聚集检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing the energy envelope in the Internet of Things using predictive cubic splines UAVs Path Deviation Attacks: Survey and Research Challenges SECON Workshops 2020 Copyright Notice Secure IoT Device Architecture Using TrustZone Implementation of a low-cost weather station developed in design-based learning framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1