Phasor measurement units placement considering double contingency by differential evolution algorithm based on Pareto method

S. M. Nosratabadi, J. Modarresi
{"title":"Phasor measurement units placement considering double contingency by differential evolution algorithm based on Pareto method","authors":"S. M. Nosratabadi, J. Modarresi","doi":"10.1109/SGC.2017.8308885","DOIUrl":null,"url":null,"abstract":"This paper suggests a methodology for Phasor Measurement Units (PMUs) optimum placement for State Estimation (SE) with regard to double contingency. Firstly, SE problem is converted into the optimization one where the fitness function is the number of unobservable nodes that is specified on the basis of Singular Value Decomposition (SVD). In the regular condition, Differential Evolution (DE) method is utilized to discover the optimum PMUs placement. According to uncertain events, a multi-objective problem is hence performed. Here, to attain this, DE method on the basis of Pareto optimum procedure is proposed. The proposed methodology is employed for the IEEE 30-bus test system considering several cases and results are prepared to assess the optimum PMUs places.","PeriodicalId":346749,"journal":{"name":"2017 Smart Grid Conference (SGC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Smart Grid Conference (SGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGC.2017.8308885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper suggests a methodology for Phasor Measurement Units (PMUs) optimum placement for State Estimation (SE) with regard to double contingency. Firstly, SE problem is converted into the optimization one where the fitness function is the number of unobservable nodes that is specified on the basis of Singular Value Decomposition (SVD). In the regular condition, Differential Evolution (DE) method is utilized to discover the optimum PMUs placement. According to uncertain events, a multi-objective problem is hence performed. Here, to attain this, DE method on the basis of Pareto optimum procedure is proposed. The proposed methodology is employed for the IEEE 30-bus test system considering several cases and results are prepared to assess the optimum PMUs places.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Pareto法的差分进化算法考虑双偶然性相量测量单元的定位
本文提出了一种双事件状态估计中相量测量单元(PMUs)的优化配置方法。首先将SE问题转化为优化问题,其中适应度函数是基于奇异值分解(SVD)指定的不可观测节点数。在规则条件下,采用差分进化方法寻找pmu的最佳布局。根据不确定事件,求解多目标问题。为此,提出了基于Pareto最优过程的DE方法。将所提出的方法应用于IEEE 30总线测试系统中,并结合多个实例给出了评估最佳pmu位置的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of anomalies in smart meter data: A density-based approach Intelligent management of immediate operation of micro grid in fault and load change based on adaptive fuzzy PI controller Optimizing microgrid using demand response and electric vehicles connection to microgrid A new control method based on droop and Thevenin theorem to improve responses of VSIs in islanded MG Multi-objective optimal scheduling of a micro-grid consisted of renewable energies using multi-objective Ant Lion Optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1