CFD study on the effect of Archimedes number and heating rate on the thermal stratification of a ventilated office

M. Rabani, H. Madessa, N. Nord
{"title":"CFD study on the effect of Archimedes number and heating rate on the thermal stratification of a ventilated office","authors":"M. Rabani, H. Madessa, N. Nord","doi":"10.3384/ECP1815317","DOIUrl":null,"url":null,"abstract":"This paper dealt with simulating a typical occupied office equipped with displacement ventilation using CFD method. The STAR-CCM+ commercial software was employed for performing the simulations in order to analyze the trend of the indoor air temperature profile in the office occupied space. Understanding this trend is a key parameter to ensure that the occupants are comfortable and thereby further conclusions on energy efficiency could be extracted. The simulations were carried out for incompressible, turbulent, and constant property air flow in the steady state condition. The results showed that increasing the number of occupants, while Archimedes number was constant, would increase the throw length of the incoming cold jet leading to an overall lower temperature profile for the case with five occupants.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP1815317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper dealt with simulating a typical occupied office equipped with displacement ventilation using CFD method. The STAR-CCM+ commercial software was employed for performing the simulations in order to analyze the trend of the indoor air temperature profile in the office occupied space. Understanding this trend is a key parameter to ensure that the occupants are comfortable and thereby further conclusions on energy efficiency could be extracted. The simulations were carried out for incompressible, turbulent, and constant property air flow in the steady state condition. The results showed that increasing the number of occupants, while Archimedes number was constant, would increase the throw length of the incoming cold jet leading to an overall lower temperature profile for the case with five occupants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿基米德数和升温速率对通风办公室热分层影响的CFD研究
本文用CFD方法模拟了一个典型的配备置换通风的办公场所。采用STAR-CCM+商业软件进行模拟,分析办公空间室内气温变化趋势。了解这一趋势是确保居住者舒适的关键参数,从而可以得出关于能源效率的进一步结论。对稳态条件下的不可压缩气流、湍流气流和恒定性气流进行了模拟。结果表明,在阿基米德数不变的情况下,增加乘员数会增加来流冷射流的抛射长度,导致五乘员情况下的整体温度分布较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and Computational study of Chemical Looping Combustion Using the concept of data enclosing tunnel as an online feedback tool for simulator training FMI4j: A Software Package for working with Functional Mock-up Units on the Java Virtual Machine Comparison of Linear Controllers for Nonlinear, Open-loop Unstable Reactor A Data-Driven Sensitivity Analysis Approach for Dynamically Positioned Vessels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1