Sharp upper bound on error probability of exact sparsity recovery

Kamiar Rahnama Rad
{"title":"Sharp upper bound on error probability of exact sparsity recovery","authors":"Kamiar Rahnama Rad","doi":"10.1109/CISS.2009.5054681","DOIUrl":null,"url":null,"abstract":"Imagine the vector y = Xβ + ε where β ∈ ℝ<sup>m</sup> has only k non zero entries and ε ∈ R<sup>n</sup> is a Gaussian noise. This can be viewed as a linear system with sparsity constraints corrupted with noise. We find a non-asymptotic upper bound on the error probability of exact recovery of the sparsity pattern given any generic measurement matrix X. By drawing X from a Gaussian ensemble, as an example, to ensure exact recovery, we obtain asymptotically sharp sufficient conditions on n which meet the necessary conditions introduced in (Wang et al., 2008).","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Imagine the vector y = Xβ + ε where β ∈ ℝm has only k non zero entries and ε ∈ Rn is a Gaussian noise. This can be viewed as a linear system with sparsity constraints corrupted with noise. We find a non-asymptotic upper bound on the error probability of exact recovery of the sparsity pattern given any generic measurement matrix X. By drawing X from a Gaussian ensemble, as an example, to ensure exact recovery, we obtain asymptotically sharp sufficient conditions on n which meet the necessary conditions introduced in (Wang et al., 2008).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确稀疏恢复误差概率的尖锐上界
假设向量y = Xβ + ε,其中β∈λ m只有k个非零项,ε∈Rn是高斯噪声。这可以看作是一个被噪声破坏的具有稀疏性约束的线性系统。我们找到了给定任意一般测量矩阵X的稀疏模式精确恢复的误差概率的非渐近上界。以高斯系综中的X为例,为了保证精确恢复,我们在n上得到了渐近尖锐的充分条件,满足(Wang et al., 2008)中引入的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1