A Case Study Using Data Analytics to Detect Hail Damage Insurance Claim Fraud

Christine Cheng, Chih-Chen Lee
{"title":"A Case Study Using Data Analytics to Detect Hail Damage Insurance Claim Fraud","authors":"Christine Cheng, Chih-Chen Lee","doi":"10.2308/jfar-2021-027","DOIUrl":null,"url":null,"abstract":"\n Employers require that accounting students think critically and use data analytics tools to gain valuable insights for forensic, tax, auditing, and advisory services. This case provides students with a hands-on learning experience using data analytics and encourages critical thinking. Students are tasked with using Alteryx and Tableau to prepare and analyze a fictitious storm dataset and insurance claims dataset to identify claims that may be suspicious. They create visualizations and spreadsheets that support their recommendation for further analysis. The learning objectives are: (1) develop student knowledge and ability to conduct data preparation through the “Extract, Transform, and Load” (ETL) process; (2) expand student knowledge of data analytics and fraud investigation; (3) provide students with practice in fraud investigation skills, including critical thinking and problem solving; (4) develop skills specific to data analytics and data visualization in accounting; and (5) develop effective oral and written communication skills.","PeriodicalId":149240,"journal":{"name":"Journal of Forensic Accounting Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forensic Accounting Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2308/jfar-2021-027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Employers require that accounting students think critically and use data analytics tools to gain valuable insights for forensic, tax, auditing, and advisory services. This case provides students with a hands-on learning experience using data analytics and encourages critical thinking. Students are tasked with using Alteryx and Tableau to prepare and analyze a fictitious storm dataset and insurance claims dataset to identify claims that may be suspicious. They create visualizations and spreadsheets that support their recommendation for further analysis. The learning objectives are: (1) develop student knowledge and ability to conduct data preparation through the “Extract, Transform, and Load” (ETL) process; (2) expand student knowledge of data analytics and fraud investigation; (3) provide students with practice in fraud investigation skills, including critical thinking and problem solving; (4) develop skills specific to data analytics and data visualization in accounting; and (5) develop effective oral and written communication skills.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用数据分析检测冰雹损害保险索赔欺诈的案例研究
雇主要求会计专业的学生批判性地思考,并使用数据分析工具来获得法务、税务、审计和咨询服务的宝贵见解。本案例为学生提供了使用数据分析的实践学习经验,并鼓励批判性思维。学生的任务是使用Alteryx和Tableau准备和分析一个虚构的风暴数据集和保险索赔数据集,以识别可能可疑的索赔。他们创建可视化和电子表格来支持他们对进一步分析的建议。学习目标是:(1)培养学生通过“提取、转换和加载”(ETL)过程进行数据准备的知识和能力;(2)拓展学生对数据分析和欺诈调查的知识;(3)为学生提供欺诈调查技能的实践,包括批判性思维和解决问题的能力;(4)发展会计数据分析和数据可视化的技能;(5)培养有效的口头和书面沟通技巧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effect of the Dark Triad on Organizational Fraud Manufacturing and Fraud: Evidence from Price Competition and Lean Inventories Remembering the Events of the COVID-19 Pandemic Editorial Policy Taxation and Forensic Accounting: Informing Research and Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1