Model-based diagnosis of chaotic vibration signals

I. Wattar, W. Hafez, Z. Gao
{"title":"Model-based diagnosis of chaotic vibration signals","authors":"I. Wattar, W. Hafez, Z. Gao","doi":"10.1109/IECON.1999.819378","DOIUrl":null,"url":null,"abstract":"This paper presents a model-based approach to online monitoring and fault diagnosis of rotating machinery. Fault (e.g., rub, imbalance) modes of rotating machines are classified using nonlinear dynamic models with quasi-periodic and chaotic behavior. The paper identifies a class of fault scenario under which the well-accepted nonlinear state filters (e.g., EKF) cannot be used to monitor or diagnose the machinery. An effective on-line model-based monitoring and diagnosis algorithm is proposed. The algorithm is based on computationally efficient algorithms for signal processing and parameter identification.","PeriodicalId":378710,"journal":{"name":"IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1999.819378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a model-based approach to online monitoring and fault diagnosis of rotating machinery. Fault (e.g., rub, imbalance) modes of rotating machines are classified using nonlinear dynamic models with quasi-periodic and chaotic behavior. The paper identifies a class of fault scenario under which the well-accepted nonlinear state filters (e.g., EKF) cannot be used to monitor or diagnose the machinery. An effective on-line model-based monitoring and diagnosis algorithm is proposed. The algorithm is based on computationally efficient algorithms for signal processing and parameter identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混沌振动信号的模型诊断
提出了一种基于模型的旋转机械在线监测与故障诊断方法。采用具有准周期和混沌行为的非线性动力学模型对旋转机械的故障(如摩擦、不平衡)模式进行分类。本文确定了一类故障场景,在这种情况下,普遍接受的非线性状态滤波器(如EKF)不能用于监测或诊断机械。提出了一种有效的基于模型的在线监测与诊断算法。该算法基于计算效率高的信号处理和参数识别算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel switched reluctance motor drive with optical graphical programming technology The 25th Annual Conference Of The IEEE Industrial Electronics Society Single phase amplitude modulation inverter for utility interaction photovoltaic system Optimum predictive and feedforward control of a precision linear stage using genetic algorithm Simulation tool for kinematic configuration control technology for dexterous robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1