Caitlin Mills, Igor Fridman, W. Soussou, Disha Waghray, A. Olney, S. D’Mello
{"title":"Put your thinking cap on: detecting cognitive load using EEG during learning","authors":"Caitlin Mills, Igor Fridman, W. Soussou, Disha Waghray, A. Olney, S. D’Mello","doi":"10.1145/3027385.3027431","DOIUrl":null,"url":null,"abstract":"Current learning technologies have no direct way to assess students' mental effort: are they in deep thought, struggling to overcome an impasse, or are they zoned out? To address this challenge, we propose the use of EEG-based cognitive load detectors during learning. Despite its potential, EEG has not yet been utilized as a way to optimize instructional strategies. We take an initial step towards this goal by assessing how experimentally manipulated (easy and difficult) sections of an intelligent tutoring system (ITS) influenced EEG-based estimates of students' cognitive load. We found a main effect of task difficulty on EEG-based cognitive load estimates, which were also correlated with learning performance. Our results show that EEG can be a viable source of data to model learners' mental states across a 90-minute session.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
Current learning technologies have no direct way to assess students' mental effort: are they in deep thought, struggling to overcome an impasse, or are they zoned out? To address this challenge, we propose the use of EEG-based cognitive load detectors during learning. Despite its potential, EEG has not yet been utilized as a way to optimize instructional strategies. We take an initial step towards this goal by assessing how experimentally manipulated (easy and difficult) sections of an intelligent tutoring system (ITS) influenced EEG-based estimates of students' cognitive load. We found a main effect of task difficulty on EEG-based cognitive load estimates, which were also correlated with learning performance. Our results show that EEG can be a viable source of data to model learners' mental states across a 90-minute session.