Learning the Wireless Channel: A Deep Neural Network Approach

Guangjin Shen, Muhammad R. A. Khandaker, Faisal Tariq
{"title":"Learning the Wireless Channel: A Deep Neural Network Approach","authors":"Guangjin Shen, Muhammad R. A. Khandaker, Faisal Tariq","doi":"10.1109/UCET51115.2020.9205318","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new deep neural network (DNN)-based channel estimation method for the Rayleigh fading channel model. While deep learning has been considered for estimating channels in many communication scenarios, direct estimation of the basic wireless single-input single-output (SISO) communication channel coefficients has not been considered. The proposed DNN-based method can efficiently estimate the channel in real time. Extensive simulation results demonstrate that the proposed channel estimator outperforms conventional least square (LS) estimators in terms of bit error rate (BER) and mean square error (MSE). In addition, the proposed channel does not need channel statistics information or complex matrix computation, thereby reducing the amount of calculation significantly.","PeriodicalId":163493,"journal":{"name":"2020 International Conference on UK-China Emerging Technologies (UCET)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on UK-China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET51115.2020.9205318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a new deep neural network (DNN)-based channel estimation method for the Rayleigh fading channel model. While deep learning has been considered for estimating channels in many communication scenarios, direct estimation of the basic wireless single-input single-output (SISO) communication channel coefficients has not been considered. The proposed DNN-based method can efficiently estimate the channel in real time. Extensive simulation results demonstrate that the proposed channel estimator outperforms conventional least square (LS) estimators in terms of bit error rate (BER) and mean square error (MSE). In addition, the proposed channel does not need channel statistics information or complex matrix computation, thereby reducing the amount of calculation significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习无线信道:一种深度神经网络方法
针对瑞利衰落信道模型,提出了一种基于深度神经网络的信道估计方法。虽然深度学习已被用于许多通信场景中的信道估计,但尚未考虑直接估计基本无线单输入单输出(SISO)通信信道系数。提出的基于深度神经网络的方法可以有效地实时估计信道。大量的仿真结果表明,该信道估计器在误码率(BER)和均方误差(MSE)方面优于传统的最小二乘(LS)估计器。此外,该信道不需要信道统计信息,也不需要复杂的矩阵计算,从而大大减少了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Wristband for Gesture Recognition Foldable, Eco-Friendly and Low-Cost Microfluidic Paper-Based Capacitive Droplet Sensor A Wearable Health Monitoring System A Novel Approach for Classifying Diabetes’ Patients Based on Imputation and Machine Learning Towards Holographic Beam-Forming Metasurface Technology for Next Generation CubeSats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1