Recommending research colloquia: a study of several sources for user profiling

HetRec '10 Pub Date : 2010-09-26 DOI:10.1145/1869446.1869451
Shaghayegh Sherry Sahebi, C. Wongchokprasitti, Peter Brusilovsky
{"title":"Recommending research colloquia: a study of several sources for user profiling","authors":"Shaghayegh Sherry Sahebi, C. Wongchokprasitti, Peter Brusilovsky","doi":"10.1145/1869446.1869451","DOIUrl":null,"url":null,"abstract":"The study reported in this paper is an attempt to improve content-based recommendation in CoMeT, a social system for sharing information about research colloquia in Carnegie Mellon and University of Pittsburgh campuses. To improve the quality of recommendation in CoMeT, we explored three additional sources for building user profiles: tags used by users to annotate CoMeT's talks, partial content of CiteULike papers bookmarked by users, and tags used to annotate CiteULike papers. We also compare different tag integration models to study the impact of information fusion on recommendations outcome. The results demonstrate that information encapsulated in CiteULike bookmarks generally helps to improve several aspects of recommendation. The addition of tags by fusing them into keyword profiles helps to improve precision and novelty of recommendation, but may harm systems ability to recommend generally interesting talks. The effects of tags and bookmarks appeared to be stackable.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869446.1869451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The study reported in this paper is an attempt to improve content-based recommendation in CoMeT, a social system for sharing information about research colloquia in Carnegie Mellon and University of Pittsburgh campuses. To improve the quality of recommendation in CoMeT, we explored three additional sources for building user profiles: tags used by users to annotate CoMeT's talks, partial content of CiteULike papers bookmarked by users, and tags used to annotate CiteULike papers. We also compare different tag integration models to study the impact of information fusion on recommendations outcome. The results demonstrate that information encapsulated in CiteULike bookmarks generally helps to improve several aspects of recommendation. The addition of tags by fusing them into keyword profiles helps to improve precision and novelty of recommendation, but may harm systems ability to recommend generally interesting talks. The effects of tags and bookmarks appeared to be stackable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推荐研究讨论会:对用户分析的几个来源的研究
这篇论文报道的研究是为了改进CoMeT中基于内容的推荐,CoMeT是一个分享卡内基梅隆大学和匹兹堡大学校园研究讨论会信息的社会系统。为了提高CoMeT中的推荐质量,我们探索了构建用户配置文件的三个额外来源:用户用于注释CoMeT演讲的标签、用户收藏的CiteULike论文的部分内容,以及用于注释CiteULike论文的标签。我们还比较了不同的标签集成模型,以研究信息融合对推荐结果的影响。结果表明,封装在CiteULike书签中的信息通常有助于提高推荐的几个方面。通过将标签融合到关键字配置文件中来添加标签有助于提高推荐的准确性和新颖性,但可能会损害系统推荐一般有趣的演讲的能力。标签和书签的效果似乎是可堆叠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving the effectiveness of collaborative recommendation with ontology-based user profiles A user meta-model for context-aware recommender systems Cross-lingual keyword recommendation using latent topics Geographical recommender system based on interaction between map operation and category selection User data distributed on the social web: how to identify users on different social systems and collecting data about them
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1