Transductive Inversion via Deep Transform Learning

Jyoti Maggu, Shalini Sharma, A. Majumdar
{"title":"Transductive Inversion via Deep Transform Learning","authors":"Jyoti Maggu, Shalini Sharma, A. Majumdar","doi":"10.23919/eusipco55093.2022.9909642","DOIUrl":null,"url":null,"abstract":"This work addresses the problem of solving a linear inverse problem. Conventional inversion techniques are model based (transductive). The advent of deep learning led the way for data-driven (inductive) inversion techniques. The main issue with inductive inversion is that unless the unseen signal (to be inverted) is similar to the training data, the learnt model fails to generalize rendering poor inversion results. A recent study on deep dictionary learning has shown how it can combine the best of both worlds – deep learning with transductive inversion. In this work, we show how the analysis counterpart of dictionary learning, called transform learning, can be extended deeper for transductive inversion. Results on dynamic MRI reconstruction, show that the proposed technique improves over the state-of-the-art.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the problem of solving a linear inverse problem. Conventional inversion techniques are model based (transductive). The advent of deep learning led the way for data-driven (inductive) inversion techniques. The main issue with inductive inversion is that unless the unseen signal (to be inverted) is similar to the training data, the learnt model fails to generalize rendering poor inversion results. A recent study on deep dictionary learning has shown how it can combine the best of both worlds – deep learning with transductive inversion. In this work, we show how the analysis counterpart of dictionary learning, called transform learning, can be extended deeper for transductive inversion. Results on dynamic MRI reconstruction, show that the proposed technique improves over the state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度变换学习的转换反演
这项工作解决了求解线性逆问题的问题。传统的反演技术是基于模型的(换能法)。深度学习的出现引领了数据驱动(归纳)反演技术的发展。归纳反演的主要问题是,除非未见信号(待反演)与训练数据相似,否则学习到的模型无法泛化,呈现较差的反演结果。最近一项关于深度字典学习的研究表明,它可以将两个世界的优点结合起来——深度学习和转换反转。在这项工作中,我们展示了字典学习的分析对应物,称为转换学习,如何可以更深入地扩展到转换反转。动态MRI重建的结果表明,所提出的技术优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1