Effects of amino acid classification on prediction of protein structural classes

Zhi Mao, Guo-Sheng Han, Tingting Wang
{"title":"Effects of amino acid classification on prediction of protein structural classes","authors":"Zhi Mao, Guo-Sheng Han, Tingting Wang","doi":"10.1109/FSKD.2013.6816289","DOIUrl":null,"url":null,"abstract":"We use the Lempel-Ziv complexity method to investigate effects of amino acid classification on prediction of protein structural classes. First, we find that contributions of amino acid classification are differential for predicting protein structural classes and even the performances of some amino acid classification are better than that without using the amino acid classification. This inspires us to observe whether the combination of amino acid classification can improve the performance for predicting protein structural classes. Finally, we convert each Lempel-Ziv complexity distance matrix into a novel kernel matrix and then use Bayesian multiple kernel learning to combine all kernels. Our method is tested on four benchmark datasets and outperforms previous methods consistently. This suggests that our proposed method is valuable for predicting protein structural classes.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We use the Lempel-Ziv complexity method to investigate effects of amino acid classification on prediction of protein structural classes. First, we find that contributions of amino acid classification are differential for predicting protein structural classes and even the performances of some amino acid classification are better than that without using the amino acid classification. This inspires us to observe whether the combination of amino acid classification can improve the performance for predicting protein structural classes. Finally, we convert each Lempel-Ziv complexity distance matrix into a novel kernel matrix and then use Bayesian multiple kernel learning to combine all kernels. Our method is tested on four benchmark datasets and outperforms previous methods consistently. This suggests that our proposed method is valuable for predicting protein structural classes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氨基酸分类对蛋白质结构分类预测的影响
利用Lempel-Ziv复杂度方法研究了氨基酸分类对蛋白质结构分类预测的影响。首先,我们发现氨基酸分类在预测蛋白质结构类别方面的贡献存在差异,甚至某些氨基酸分类的性能优于不使用氨基酸分类的结果。这启发我们观察结合氨基酸分类是否可以提高预测蛋白质结构类别的性能。最后,我们将每个Lempel-Ziv复杂度距离矩阵转换成一个新的核矩阵,然后使用贝叶斯多核学习将所有核组合起来。我们的方法在四个基准数据集上进行了测试,并且始终优于以前的方法。这表明我们提出的方法在预测蛋白质结构类别方面是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised clustering with the Octave Fuzzy Logic Toolkit Application of adaptive neuro-fuzzy inference system for physical habitat simulation Fuzzy equivalence relation clustering with transitive closure, transitive opening and the optimal transitive approximation A local domain adaptation feature extraction method A real-time algorithm for fixed-length short data compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1