Ensemble Learning for UAV Detection: Developing a Multi-Class Multimodal Dataset

J. McCoy, A. Rawal, D. Rawat
{"title":"Ensemble Learning for UAV Detection: Developing a Multi-Class Multimodal Dataset","authors":"J. McCoy, A. Rawal, D. Rawat","doi":"10.1109/IRI58017.2023.00025","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are a growing threat to public safety if used maliciously. In this study, we present our multimodal data set containing image, audio, and radio frequency (RF) data, which can serve as a valuable resource for researchers and developers in the field of UAV detection. We present a multiclass multimodal ensemble approach to address the need to improve UAV identification and detection. Our approach is novel as we integrated multiple deep-learning classifiers into a single ensemble classifier. We evaluate the performance of our proposed solution with a hard-voting model and a soft-voted model to evaluate the effectiveness of the proposed solution. Overall, our ensemble approach performed better than the single-modality classifier and when combined, could mitigate the low accuracy of the RF (CNN) accuracy score of 67%. This study has shown how effective ensemble approaches can be used to mitigate limitations when predicting UAV based on multimodal signatures.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) are a growing threat to public safety if used maliciously. In this study, we present our multimodal data set containing image, audio, and radio frequency (RF) data, which can serve as a valuable resource for researchers and developers in the field of UAV detection. We present a multiclass multimodal ensemble approach to address the need to improve UAV identification and detection. Our approach is novel as we integrated multiple deep-learning classifiers into a single ensemble classifier. We evaluate the performance of our proposed solution with a hard-voting model and a soft-voted model to evaluate the effectiveness of the proposed solution. Overall, our ensemble approach performed better than the single-modality classifier and when combined, could mitigate the low accuracy of the RF (CNN) accuracy score of 67%. This study has shown how effective ensemble approaches can be used to mitigate limitations when predicting UAV based on multimodal signatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机检测的集成学习:多类多模态数据集的开发
无人驾驶飞行器(uav)如果被恶意使用,将对公共安全构成越来越大的威胁。在本研究中,我们展示了包含图像、音频和射频(RF)数据的多模态数据集,这些数据集可以作为无人机检测领域的研究人员和开发人员的宝贵资源。我们提出了一种多类多模态集成方法来解决改进无人机识别和检测的需要。我们的方法是新颖的,因为我们将多个深度学习分类器集成到一个集成分类器中。我们用硬投票模型和软投票模型来评估我们提出的解决方案的性能,以评估提出的解决方案的有效性。总体而言,我们的集成方法比单模态分类器表现更好,并且当组合时,可以减轻RF (CNN)准确率得分为67%的低准确率。这项研究表明,在基于多模态特征预测无人机时,如何使用有效的集成方法来减轻局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research Paper Classification and Recommendation System based-on Fine-Tuning BERT Using BERT to Understand TikTok Users’ ADHD Discussion Enhancing Noisy Binary Search Efficiency through Deep Reinforcement Learning Copyright An Approach to Testing Banking Software Using Metamorphic Relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1