A BINOMIAL MODEL APPROXIMATION FOR MULTIPLE TESTING

I. Adeleke, A. Adeyemi, E. Akarawak
{"title":"A BINOMIAL MODEL APPROXIMATION FOR MULTIPLE TESTING","authors":"I. Adeleke, A. Adeyemi, E. Akarawak","doi":"10.51406/jnset.v16i2.1850","DOIUrl":null,"url":null,"abstract":"Multiple testing is associated with simultaneous testing of many hypotheses, and frequently calls for adjusting level of significance in some way that the probability of observing at least one significant result due to chance remains below the desired significance levels. This study developed a Binomial Model Approximations (BMA) method as an alternative to addressing the multiplicity problem associated with testing more than one hypothesis at a time. The proposed method has demonstrated capacity for controlling Type I Error Rate as sample size increases when compared with the existing Bonferroni and False Discovery Rate (FDR). \n  \n  \n ","PeriodicalId":389500,"journal":{"name":"Journal of Natural Sciences Engineering and Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51406/jnset.v16i2.1850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple testing is associated with simultaneous testing of many hypotheses, and frequently calls for adjusting level of significance in some way that the probability of observing at least one significant result due to chance remains below the desired significance levels. This study developed a Binomial Model Approximations (BMA) method as an alternative to addressing the multiplicity problem associated with testing more than one hypothesis at a time. The proposed method has demonstrated capacity for controlling Type I Error Rate as sample size increases when compared with the existing Bonferroni and False Discovery Rate (FDR).      
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重检验的二项模型近似
多重检验与同时检验许多假设有关,并且经常要求以某种方式调整显著性水平,使观察到至少一个显著结果的概率由于偶然而低于期望的显著性水平。本研究开发了一种二项模型近似(BMA)方法,作为解决与一次测试多个假设相关的多重性问题的替代方法。与现有的Bonferroni和错误发现率(FDR)相比,所提出的方法显示出随样本量增加而控制I型错误率的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
URBAN FLOOD IMPACTS, FLOOD WATER QUALITY AND RISK MAPPING OF OLODO AREA, IBADAN, NIGERIA GEO-ELECTRIC INVESTIGATION OF GROUNDWATER POTENTIAL IN LADERIN HOUSING ESTATE, ABEOKUTA, SOUTHWESTERN, NIGERIA PATHOMORPHOLOGICAL CHANGES AND BACTERIAL PATHOGENS ASSOCIATED WITH SWINE PNEUMONIAS IN SOUTHWEST NIGERIA PREDICTING SOCIAL NETWORK ADDICTION USING VARIANT SIGMOID TRANSFER FEED-FORWARD NEURAL NETWORKS (FNN-SNA) EFFECTS OF VARYING WATER-CEMENT RATIOS ON DIFFERENT GRADES OF CONCRETE USING LOCALLY MATERIALS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1