Towards Identify Anonymization in Large Survey Rating Data

Xiaoxun Sun, Hua Wang
{"title":"Towards Identify Anonymization in Large Survey Rating Data","authors":"Xiaoxun Sun, Hua Wang","doi":"10.1109/NSS.2010.11","DOIUrl":null,"url":null,"abstract":"We study the challenge of identity protection in the large public survey rating data. Even though the survey participants do not reveal any of their ratings, their survey records are potentially identifiable by using information from other public sources. None of the existing anonymisation principles (e.g., $k$-anonymity, $l$-diversity, etc.) can effectively prevent such breaches in large survey rating data sets. In this paper, we tackle the problem by defining the $ (k, \\epsilon)$-anonymity principle. The principle requires for each transaction $t$ in the given survey rating data $T$, at least $ (k-1)$ other transactions in $T$ must have ratings similar with $t$, where the similarity is controlled by $\\epsilon$. We propose a greedy approach to anonymize survey rating data and apply the method to two real-life data sets to demonstrate their efficiency and practical utility.","PeriodicalId":127173,"journal":{"name":"2010 Fourth International Conference on Network and System Security","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Network and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the challenge of identity protection in the large public survey rating data. Even though the survey participants do not reveal any of their ratings, their survey records are potentially identifiable by using information from other public sources. None of the existing anonymisation principles (e.g., $k$-anonymity, $l$-diversity, etc.) can effectively prevent such breaches in large survey rating data sets. In this paper, we tackle the problem by defining the $ (k, \epsilon)$-anonymity principle. The principle requires for each transaction $t$ in the given survey rating data $T$, at least $ (k-1)$ other transactions in $T$ must have ratings similar with $t$, where the similarity is controlled by $\epsilon$. We propose a greedy approach to anonymize survey rating data and apply the method to two real-life data sets to demonstrate their efficiency and practical utility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型调查评级数据的识别匿名化研究
研究了大型民意调查评级数据中身份保护的挑战。即使调查参与者没有透露他们的任何评级,他们的调查记录也有可能通过使用其他公共来源的信息来识别。现有的匿名原则(例如,$k$-匿名,$l$-多样性等)都不能有效防止大型调查评级数据集中的此类违规行为。在本文中,我们通过定义$ (k, \epsilon)$-匿名原则来解决这个问题。该原则要求对于给定调查评级数据$t$中的每笔交易$t$, $t$中至少$ (k-1)$其他交易必须具有与$t$相似的评级,其中相似性由$\epsilon$控制。我们提出了一种贪婪的方法来匿名化调查评级数据,并将该方法应用于两个现实生活中的数据集,以证明其效率和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy-Preserving Protocols for String Matching The PU-Tree: A Partition-Based Uncertain High-Dimensional Indexing Algorithm Ignorant Experts: Computer and Network Security Support from Internet Service Providers Resource Selection from Distributed Semantic Web Stores A Purpose Based Access Control in XML Databases System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1