Hippogriff: Efficiently moving data in heterogeneous computing systems

Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin, S. Swanson
{"title":"Hippogriff: Efficiently moving data in heterogeneous computing systems","authors":"Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin, S. Swanson","doi":"10.1109/ICCD.2016.7753307","DOIUrl":null,"url":null,"abstract":"Data movement between the compute and the storage (e.g., GPU and SSD) has been a long-neglected problem in heterogeneous systems, while the inefficiency in existing systems does cause significant loss in both performance and energy efficiency. This paper presents Hippogriff to provide a high-level programming model to simplify data movement between the compute and the storage, and to dynamically schedule data transfers based on system load. By eliminating unnecessary data movement, Hippogriff can speedup single program workloads by 1.17×, and save 17% energy. For multi-program workloads, Hippogriff shows 1.25× speedup. Hippogriff also improves the performance of a GPU-based MapReduce framework by 27%.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data movement between the compute and the storage (e.g., GPU and SSD) has been a long-neglected problem in heterogeneous systems, while the inefficiency in existing systems does cause significant loss in both performance and energy efficiency. This paper presents Hippogriff to provide a high-level programming model to simplify data movement between the compute and the storage, and to dynamically schedule data transfers based on system load. By eliminating unnecessary data movement, Hippogriff can speedup single program workloads by 1.17×, and save 17% energy. For multi-program workloads, Hippogriff shows 1.25× speedup. Hippogriff also improves the performance of a GPU-based MapReduce framework by 27%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鹰头马身有翼兽:在异构计算系统中有效地移动数据
在异构系统中,计算和存储(如GPU和SSD)之间的数据移动一直是一个被忽视的问题,而现有系统的低效率确实会导致性能和能源效率的重大损失。本文提出了一种高级编程模型,以简化计算和存储之间的数据移动,并根据系统负载动态调度数据传输。通过消除不必要的数据移动,Hippogriff可以将单个程序的工作负载加快1.17倍,节省17%的能源。对于多程序工作负载,鹰头马身有翼兽显示1.25倍的加速。Hippogriff还将基于gpu的MapReduce框架的性能提高了27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CNN-MERP: An FPGA-based memory-efficient reconfigurable processor for forward and backward propagation of convolutional neural networks VARIUS-TC: A modular architecture-level model of parametric variation for thin-channel switches A readback based general debugging framework for soft-core processors How logic masking can improve path delay analysis for Hardware Trojan detection ONAC: Optimal number of active cores detector for energy efficient GPU computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1