Diego Perez Liebana, Philipp Rohlfshagen, S. Lucas
{"title":"Monte Carlo Tree Search: Long-term versus short-term planning","authors":"Diego Perez Liebana, Philipp Rohlfshagen, S. Lucas","doi":"10.1109/CIG.2012.6374159","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the use of Monte Carlo Tree Search (MCTS) on the Physical Travelling Salesman Problem (PTSP), a real-time game where the player navigates a ship across a map full of obstacles in order to visit a series of waypoints as quickly as possible. In particular, we assess the algorithm's ability to plan ahead and subsequently solve the two major constituents of the PTSP: the order of waypoints (long-term planning) and driving the ship (short-term planning). We show that MCTS can provide better results when these problems are treated separately: the optimal order of cities is found using Branch & Bound and the ship is navigated to collect the waypoints using MCTS. We also demonstrate that the physics of the PTSP game impose a challenge regarding the optimal order of cities and propose a solution that obtains better results than following the TSP route of minimum Euclidean distance.","PeriodicalId":288052,"journal":{"name":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2012.6374159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper we investigate the use of Monte Carlo Tree Search (MCTS) on the Physical Travelling Salesman Problem (PTSP), a real-time game where the player navigates a ship across a map full of obstacles in order to visit a series of waypoints as quickly as possible. In particular, we assess the algorithm's ability to plan ahead and subsequently solve the two major constituents of the PTSP: the order of waypoints (long-term planning) and driving the ship (short-term planning). We show that MCTS can provide better results when these problems are treated separately: the optimal order of cities is found using Branch & Bound and the ship is navigated to collect the waypoints using MCTS. We also demonstrate that the physics of the PTSP game impose a challenge regarding the optimal order of cities and propose a solution that obtains better results than following the TSP route of minimum Euclidean distance.