Learning Gaussian mixture model for saliency detection on face images

Yun Ren, Mai Xu, Ruihan Pan, Zulin Wang
{"title":"Learning Gaussian mixture model for saliency detection on face images","authors":"Yun Ren, Mai Xu, Ruihan Pan, Zulin Wang","doi":"10.1109/ICME.2015.7177465","DOIUrl":null,"url":null,"abstract":"The previous work has demonstrated that integrating top-down features in bottom-up saliency methods can improve the saliency prediction accuracy. Therefore, for face images, this paper proposes a saliency detection method based on Gaussian mixture model (GMM), which learns the distribution of saliency over face regions as the top-down feature. Specifically, we verify that fixations tend to cluster around facial features, when viewing images with large faces. Thus, the GMM is learnt from fixations of eye tracking data, for establishing the distribution of saliency in faces. Then, in our method, the top-down feature upon the the learnt GMM is combined with the conventional bottom-up features (i.e., color, intensity, and orientation), for saliency detection. Finally, experimental results validate that our method is capable of improving the accuracy of saliency prediction for face images.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The previous work has demonstrated that integrating top-down features in bottom-up saliency methods can improve the saliency prediction accuracy. Therefore, for face images, this paper proposes a saliency detection method based on Gaussian mixture model (GMM), which learns the distribution of saliency over face regions as the top-down feature. Specifically, we verify that fixations tend to cluster around facial features, when viewing images with large faces. Thus, the GMM is learnt from fixations of eye tracking data, for establishing the distribution of saliency in faces. Then, in our method, the top-down feature upon the the learnt GMM is combined with the conventional bottom-up features (i.e., color, intensity, and orientation), for saliency detection. Finally, experimental results validate that our method is capable of improving the accuracy of saliency prediction for face images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习高斯混合模型在人脸图像显著性检测中的应用
以往的研究表明,将自顶向下特征整合到自底向上显著性方法中可以提高显著性预测的精度。因此,针对人脸图像,本文提出了一种基于高斯混合模型(GMM)的显著性检测方法,该方法将显著性在人脸区域的分布作为自上而下的特征进行学习。具体来说,我们证实,当观看大脸图像时,注视倾向于集中在面部特征周围。因此,GMM是从眼动追踪数据的固定中学习的,用于建立面部显著性的分布。然后,在我们的方法中,将学习到的GMM上的自顶向下特征与传统的自底向上特征(即颜色、强度和方向)相结合,进行显著性检测。最后,实验结果验证了该方法能够提高人脸图像显著性预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1