Completing a joint PMF from projections: A low-rank coupled tensor factorization approach

Nikos Kargas, N. Sidiropoulos
{"title":"Completing a joint PMF from projections: A low-rank coupled tensor factorization approach","authors":"Nikos Kargas, N. Sidiropoulos","doi":"10.1109/ITA.2017.8023474","DOIUrl":null,"url":null,"abstract":"There has recently been considerable interest in completing a low-rank matrix or tensor given only a small fraction (or few linear combinations) of its entries. Related approaches have found considerable success in the area of recommender systems, under machine learning. From a statistical estimation point of view, the gold standard is to have access to the joint probability distribution of all pertinent random variables, from which any desired optimal estimator can be readily derived. In practice high-dimensional joint distributions are very hard to estimate, and only estimates of low-dimensional projections may be available. We show that it is possible to identify higher-order joint PMFs from lower-order marginalized PMFs using coupled low-rank tensor factorization. Our approach features guaranteed identifiability when the full joint PMF is of low-enough rank, and effective approximation otherwise. We provide an algorithmic approach to compute the sought factors, and illustrate the merits of our approach using rating prediction as an example.","PeriodicalId":305510,"journal":{"name":"2017 Information Theory and Applications Workshop (ITA)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2017.8023474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

There has recently been considerable interest in completing a low-rank matrix or tensor given only a small fraction (or few linear combinations) of its entries. Related approaches have found considerable success in the area of recommender systems, under machine learning. From a statistical estimation point of view, the gold standard is to have access to the joint probability distribution of all pertinent random variables, from which any desired optimal estimator can be readily derived. In practice high-dimensional joint distributions are very hard to estimate, and only estimates of low-dimensional projections may be available. We show that it is possible to identify higher-order joint PMFs from lower-order marginalized PMFs using coupled low-rank tensor factorization. Our approach features guaranteed identifiability when the full joint PMF is of low-enough rank, and effective approximation otherwise. We provide an algorithmic approach to compute the sought factors, and illustrate the merits of our approach using rating prediction as an example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从投影完成联合PMF:一种低秩耦合张量分解方法
最近有相当大的兴趣在完成一个低秩矩阵或张量,只给它的一小部分(或少数线性组合)的条目。相关方法在机器学习下的推荐系统领域取得了相当大的成功。从统计估计的角度来看,黄金标准是获得所有相关随机变量的联合概率分布,从中可以很容易地推导出任何理想的最优估计量。在实践中,高维联合分布很难估计,只有对低维投影的估计是可用的。我们证明了使用耦合低秩张量分解从低阶边缘pmf中识别高阶联合pmf是可能的。该方法的特点是当全联合PMF秩足够低时保证可辨识性,否则是有效的逼近。我们提供了一种算法方法来计算搜索因子,并以评级预测为例说明了我们的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel index coding scheme and its application to coded caching Multidimensional index modulation in wireless communications Claude Shannon in Chess Review Device-aware routing and scheduling in multi-hop Device-to-Device networks Power-performance analysis of a simple one-bit transceiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1