Infinite Dirichlet Mixture Model and Its Application via Variational Bayes

Wentao Fan, N. Bouguila
{"title":"Infinite Dirichlet Mixture Model and Its Application via Variational Bayes","authors":"Wentao Fan, N. Bouguila","doi":"10.1109/ICMLA.2011.81","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Bayesian nonparametric approach for modeling and selection based on the mixture of Dirichlet processes with Dirichlet distributions, which can also be considered as an infinite Dirichlet mixture model. The proposed model adopts a stick-breaking representation of the Dirichlet process and is learned through a variational inference method. In our approach, the determination of the number of clusters is sidestepped by assuming an infinite number of clusters. The effectiveness of our approach is tested on a real application involving unsupervised image categorization.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we propose a Bayesian nonparametric approach for modeling and selection based on the mixture of Dirichlet processes with Dirichlet distributions, which can also be considered as an infinite Dirichlet mixture model. The proposed model adopts a stick-breaking representation of the Dirichlet process and is learned through a variational inference method. In our approach, the determination of the number of clusters is sidestepped by assuming an infinite number of clusters. The effectiveness of our approach is tested on a real application involving unsupervised image categorization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无限Dirichlet混合模型及其变分贝叶斯应用
本文提出了一种基于Dirichlet过程和Dirichlet分布的混合模型的贝叶斯非参数建模和选择方法,该方法也可以看作是一个无限的Dirichlet混合模型。该模型采用狄利克雷过程的断棒表示,并通过变分推理方法进行学习。在我们的方法中,通过假设无限数量的集群来回避集群数量的确定。在涉及无监督图像分类的实际应用中测试了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1