Yang Zhang, D. Feng, Wei Tong, Jingning Liu, Chengning Wang, Jie Xu
{"title":"Tiered-ReRAM: A Low Latency and Energy Efficient TLC Crossbar ReRAM Architecture","authors":"Yang Zhang, D. Feng, Wei Tong, Jingning Liu, Chengning Wang, Jie Xu","doi":"10.1109/MSST.2019.00-13","DOIUrl":null,"url":null,"abstract":"Resistive Memory (ReRAM) is promising to be used as high density storage-class memory by employing Triple-Level Cell (TLC) and crossbar structures. However, TLC crossbar ReRAM suffers from high write latency and energy due to the IR drop issue and the iterative program-and-verify procedure. In this paper, we propose Tiered-ReRAM architecture to overcome the challenges of TLC crossbar ReRAM. The proposed Tiered-ReRAM consists of three components, namely Tiered-crossbar design, Compression-based Incomplete Data Mapping (CIDM), and Compression-based Flip Scheme (CFS). Specifically, based on the observation that the magnitude of IR drops is primarily determined by the long length of bitlines in Double-Sided Ground Biasing (DSGB) crossbar arrays, Tiered-crossbar design splits each long bitline into the near and far segments by an isolation transistor, allowing the near segment to be accessed with decreased latency and energy. Moreover, in the near segments, CIDM dynamically selects the most appropriate IDM for each cache line according to the saved space by compression, which further reduces the write latency and energy with insignificant space overhead. In addition, in the far segments, CFS dynamically selects the most appropriate flip scheme for each cache line, which ensures more high resistance cells written into crossbar arrays and effectively reduces the leakage energy. For each compressed cache line, the selected IDM or flip scheme is applied on the condition that the total encoded data size will never exceed the original cache line size. The experimental results show that, on average, Tiered-ReRAM can improve the system performance by 30.5%, reduce the write latency by 35.2%, decrease the read latency by 26.1%, and reduce the energy consumption by 35.6%, compared to an aggressive baseline.","PeriodicalId":391517,"journal":{"name":"2019 35th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 35th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2019.00-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Resistive Memory (ReRAM) is promising to be used as high density storage-class memory by employing Triple-Level Cell (TLC) and crossbar structures. However, TLC crossbar ReRAM suffers from high write latency and energy due to the IR drop issue and the iterative program-and-verify procedure. In this paper, we propose Tiered-ReRAM architecture to overcome the challenges of TLC crossbar ReRAM. The proposed Tiered-ReRAM consists of three components, namely Tiered-crossbar design, Compression-based Incomplete Data Mapping (CIDM), and Compression-based Flip Scheme (CFS). Specifically, based on the observation that the magnitude of IR drops is primarily determined by the long length of bitlines in Double-Sided Ground Biasing (DSGB) crossbar arrays, Tiered-crossbar design splits each long bitline into the near and far segments by an isolation transistor, allowing the near segment to be accessed with decreased latency and energy. Moreover, in the near segments, CIDM dynamically selects the most appropriate IDM for each cache line according to the saved space by compression, which further reduces the write latency and energy with insignificant space overhead. In addition, in the far segments, CFS dynamically selects the most appropriate flip scheme for each cache line, which ensures more high resistance cells written into crossbar arrays and effectively reduces the leakage energy. For each compressed cache line, the selected IDM or flip scheme is applied on the condition that the total encoded data size will never exceed the original cache line size. The experimental results show that, on average, Tiered-ReRAM can improve the system performance by 30.5%, reduce the write latency by 35.2%, decrease the read latency by 26.1%, and reduce the energy consumption by 35.6%, compared to an aggressive baseline.