Discrete Cosine Transform-Based Key Generation Scheme for Indoor Environment

Suwadi, Mike Yuliana, Wirawan
{"title":"Discrete Cosine Transform-Based Key Generation Scheme for Indoor Environment","authors":"Suwadi, Mike Yuliana, Wirawan","doi":"10.1109/ISRITI54043.2021.9702786","DOIUrl":null,"url":null,"abstract":"One of the widely used techniques to ensure confidentiality in the Internet of Things (IoT) communications is cryptography. The technique works by establishing a secure path for communication between IoT devices. However, the obstacle that occurs is that the IoT device is a device with computational limitations so that it is unable to implement the secret key distribution mechanism in the cryptographic technique. To overcome this problem, some researchers focus on efforts to generate a random secret key on each device by utilizing the randomness of the communication channel. This paper proposes a key generation scheme intended for IoT devices using IEEE 802.11. This scheme utilizes the Discrete Cosine Transform (DCT) method to increase the correlation coefficient of the observed communication channel and reduce the resulting secret key bit mismatch. Performance validation of the key generation scheme carried out in an indoor environment shows that the resulting scheme can increase the correlation coefficient up to 20% and achieve a BGR of up to 8.52488 bps.","PeriodicalId":156265,"journal":{"name":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI54043.2021.9702786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the widely used techniques to ensure confidentiality in the Internet of Things (IoT) communications is cryptography. The technique works by establishing a secure path for communication between IoT devices. However, the obstacle that occurs is that the IoT device is a device with computational limitations so that it is unable to implement the secret key distribution mechanism in the cryptographic technique. To overcome this problem, some researchers focus on efforts to generate a random secret key on each device by utilizing the randomness of the communication channel. This paper proposes a key generation scheme intended for IoT devices using IEEE 802.11. This scheme utilizes the Discrete Cosine Transform (DCT) method to increase the correlation coefficient of the observed communication channel and reduce the resulting secret key bit mismatch. Performance validation of the key generation scheme carried out in an indoor environment shows that the resulting scheme can increase the correlation coefficient up to 20% and achieve a BGR of up to 8.52488 bps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离散余弦变换的室内环境密钥生成方案
在物联网(IoT)通信中广泛使用的确保机密性的技术之一是密码学。该技术通过为物联网设备之间的通信建立安全路径来工作。然而,出现的障碍是物联网设备是具有计算限制的设备,因此无法实现加密技术中的密钥分发机制。为了克服这个问题,一些研究人员致力于利用通信信道的随机性在每个设备上生成随机密钥。本文提出了一种用于使用IEEE 802.11的物联网设备的密钥生成方案。该方案利用离散余弦变换(DCT)方法提高观测到的通信信道的相关系数,减少由此产生的密钥位不匹配。在室内环境下对密钥生成方案进行了性能验证,结果表明该方案可使相关系数提高20%,BGR达到8.52488 bps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved HEVC Video Encoding Quality With Multi Scalability Techniques Indonesian Clickbait Detection Using Improved Backpropagation Neural Network Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19 Online Retail Pattern Quality Improvement: From Frequent Sequential Pattern to High-Utility Sequential Pattern East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1