Deep Gaussian processes: Theory and applications

P. Djurić
{"title":"Deep Gaussian processes: Theory and applications","authors":"P. Djurić","doi":"10.1109/NEUREL.2018.8586994","DOIUrl":null,"url":null,"abstract":"Gaussian processes are an infinite-dimensional generalization of multivariate normal distributions. They provide a principled approach to learning with kernel machines and they have found wide applications in many fields. More recently, with the advance of deep learning, the concept of deep Gaussian processes has emerged. Deep Gaussian processes have improved capacity for prediction and classification over standard Gaussian processes and models based on them preserve the features of allowing for full Bayesian treatment and for applications when the amount of available data is limited. The theory of recent progress in deep Gaussian processes will be presented and selected applications to problems in medicine will be provided.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8586994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian processes are an infinite-dimensional generalization of multivariate normal distributions. They provide a principled approach to learning with kernel machines and they have found wide applications in many fields. More recently, with the advance of deep learning, the concept of deep Gaussian processes has emerged. Deep Gaussian processes have improved capacity for prediction and classification over standard Gaussian processes and models based on them preserve the features of allowing for full Bayesian treatment and for applications when the amount of available data is limited. The theory of recent progress in deep Gaussian processes will be presented and selected applications to problems in medicine will be provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度高斯过程:理论与应用
高斯过程是多元正态分布的无限维推广。它们提供了一种有原则的方法来使用内核机进行学习,并且在许多领域得到了广泛的应用。最近,随着深度学习的发展,深度高斯过程的概念出现了。与标准高斯过程相比,深度高斯过程具有更好的预测和分类能力,基于深度高斯过程的模型保留了允许完全贝叶斯处理的特征,并适用于可用数据量有限的情况。将介绍深度高斯过程的最新进展理论,并提供在医学问题上的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain - Machine Interfaces in the Context of Artificial Intelligence Development Feature Selection for Image Distortion Classification Supervised and Unsupervised Learning of Fetal Heart Rate Tracings with Deep Gaussian Processes Modeling and Optimization of Hexavalent Chromium Sorption onto Amberjet 1200H by Using Multiple-Linear Regression Real-Time Multi-Sensor Infrared Imagery Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1