Efficient parallel implementation of morphological operation on GPU and FPGA

Teng Li, Y. Dou, Jingfei Jiang, Jing Gao
{"title":"Efficient parallel implementation of morphological operation on GPU and FPGA","authors":"Teng Li, Y. Dou, Jingfei Jiang, Jing Gao","doi":"10.1109/SPAC.2014.6982728","DOIUrl":null,"url":null,"abstract":"Morphological operation constitutes one of a powerful and versatile image and video applications applied to a wide range of domains, from object recognition, to feature extraction and to moving objects detection in computer vision where real-time and high-performance are required. However, the throughput of morphological operation is constrained by the convolutional characteristic. In this paper, we analysis the parallelism of morphological operation and parallel implementations on the graphics processing unit (GPU), and field programming gate array (FPGA) are presented. For GPU platform, we propose the optimized schemes based on global memory, texture memory and shared memory, achieving the throughput of 942.63 Mbps with 3×3 structuring element. For FPGA platform, we present an optimized method based on the traditional delay-line architecture. For 3×3 structuring element, it achieves a throughput of 462.64 Mbps.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Morphological operation constitutes one of a powerful and versatile image and video applications applied to a wide range of domains, from object recognition, to feature extraction and to moving objects detection in computer vision where real-time and high-performance are required. However, the throughput of morphological operation is constrained by the convolutional characteristic. In this paper, we analysis the parallelism of morphological operation and parallel implementations on the graphics processing unit (GPU), and field programming gate array (FPGA) are presented. For GPU platform, we propose the optimized schemes based on global memory, texture memory and shared memory, achieving the throughput of 942.63 Mbps with 3×3 structuring element. For FPGA platform, we present an optimized method based on the traditional delay-line architecture. For 3×3 structuring element, it achieves a throughput of 462.64 Mbps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态学运算在GPU和FPGA上的高效并行实现
形态学运算是一种强大而通用的图像和视频应用程序之一,应用于广泛的领域,从物体识别到特征提取,再到计算机视觉中需要实时和高性能的运动物体检测。然而,形态学运算的吞吐量受到卷积特性的限制。本文分析了形态运算的并行性和图形处理器(GPU)上的并行实现,并提出了现场编程门阵列(FPGA)。在GPU平台上,我们提出了基于全局内存、纹理内存和共享内存的优化方案,以3×3结构元素实现了942.63 Mbps的吞吐量。针对FPGA平台,提出了一种基于传统延迟线架构的优化方法。对于3×3结构单元,它实现了462.64 Mbps的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1