Laser nanostructuring for plasmon enhancement of Ag/ZnO optical characteristics

M. Koleva, N. Nedyalkov, N. Fukata, W. Jevasuwan, S. Amoruso
{"title":"Laser nanostructuring for plasmon enhancement of Ag/ZnO optical characteristics","authors":"M. Koleva, N. Nedyalkov, N. Fukata, W. Jevasuwan, S. Amoruso","doi":"10.1117/12.2262097","DOIUrl":null,"url":null,"abstract":"The experimental and theoretical investigations of the optical characteristics of laser nanostructured Ag nanoparticles (AgNPs) in ZnO medium are of particular interest for this study. The Ag-ZnO nanocomposites are fabricated by room temperature pulsed laser synthesis method. Ag nanoparticles are prepared by laser deposition and subsequent laser annealing of silver thin film. Laser annealing of silver layer is performed at second and third harmonics of the Nd:YAG laser. The morphology of AgNPs differs significantly after the UV and VIS surface modification. The morphology and optical properties of the samples are studied according to the annealing regimes. A comparative study of the measured plasmon resonance properties with the theoretical calculations of the extinction efficiency by generalized multiparticle Mie (GMM) method is carried out. The extinction spectrum is determined as a function of the nanoparticles size distribution and the surrounding ZnO medium. The electromagnetic field intensity enhancement realized in the “hot spots” of AgNPs leads to substantial enhancement of the near band-edge UV photoluminescence (PL) emission of ZnO nanostructures and attenuation of the defect-related deep-level VIS PL signal after annealing at 355 nm and 532 nm.","PeriodicalId":355156,"journal":{"name":"International School on Quantum Electronics: Laser Physics and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International School on Quantum Electronics: Laser Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2262097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The experimental and theoretical investigations of the optical characteristics of laser nanostructured Ag nanoparticles (AgNPs) in ZnO medium are of particular interest for this study. The Ag-ZnO nanocomposites are fabricated by room temperature pulsed laser synthesis method. Ag nanoparticles are prepared by laser deposition and subsequent laser annealing of silver thin film. Laser annealing of silver layer is performed at second and third harmonics of the Nd:YAG laser. The morphology of AgNPs differs significantly after the UV and VIS surface modification. The morphology and optical properties of the samples are studied according to the annealing regimes. A comparative study of the measured plasmon resonance properties with the theoretical calculations of the extinction efficiency by generalized multiparticle Mie (GMM) method is carried out. The extinction spectrum is determined as a function of the nanoparticles size distribution and the surrounding ZnO medium. The electromagnetic field intensity enhancement realized in the “hot spots” of AgNPs leads to substantial enhancement of the near band-edge UV photoluminescence (PL) emission of ZnO nanostructures and attenuation of the defect-related deep-level VIS PL signal after annealing at 355 nm and 532 nm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体增强Ag/ZnO光学特性的激光纳米结构
对激光纳米结构银纳米粒子(AgNPs)在ZnO介质中的光学特性进行实验和理论研究是本研究的重点。采用室温脉冲激光合成方法制备了Ag-ZnO纳米复合材料。采用激光沉积和激光退火的方法制备银纳米粒子。在Nd:YAG激光器的二、三次谐波下对银层进行激光退火。经过UV和VIS表面修饰后,AgNPs的形貌有明显的不同。根据退火制度对样品的形貌和光学性能进行了研究。用广义多粒子Mie法(GMM)计算消光效率,并与测量的等离子体共振特性进行了对比研究。消光谱是纳米颗粒尺寸分布和周围ZnO介质的函数。在AgNPs的“热点”处实现的电磁场强度增强导致ZnO纳米结构的近带边紫外光致发光(PL)发射显著增强,并且在355nm和532nm退火后缺陷相关的深能级VIS PL信号衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards bridging non-ionizing, ultra intense, laser radiation and ionizing radiation in cancer therapy Properties of polymeric materials for optical systems Multispectral autoflourescence detection of skin neoplasia using steady-state techniques Flexible and stretchable optoelectronic devices using graphene Depolarization of femtosecond pulses in air by nonlinear mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1