{"title":"Investigation of the Optimal PID-Like Fuzzy Logic Controller for Ball and Beam System with Improved Quantum Particle Swarm Optimization","authors":"Okkes Tolga Altinöz, A. Yılmaz","doi":"10.1142/s1469026822500250","DOIUrl":null,"url":null,"abstract":"Fuzzy Logic Controllers (FLCs) are intelligent control methods, where membership functions and corresponding rules are defined to get a proper control signal. The parameters were defined for these controllers, and they are named as PID-like FLC since the input and output parameters are connected to the Fuzzy controller with integral and derivative action of the error signal to change the behavior/performance of FLC. In this research, three different rule sets for Fuzzy controllers; 3 × 3, 5 × 5, and 7 × 7 are used and parameters are optimized with; differential evolution, genetic algorithm, particle swarm optimization and quantum-behaved particle swarm optimization. In addition to these controllers, a novel algorithm named as improved quantum particle swarm optimization is proposed as a part of this research. The simulation and real-life implementation on the experimental set results of these controllers are discussed in this paper.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026822500250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fuzzy Logic Controllers (FLCs) are intelligent control methods, where membership functions and corresponding rules are defined to get a proper control signal. The parameters were defined for these controllers, and they are named as PID-like FLC since the input and output parameters are connected to the Fuzzy controller with integral and derivative action of the error signal to change the behavior/performance of FLC. In this research, three different rule sets for Fuzzy controllers; 3 × 3, 5 × 5, and 7 × 7 are used and parameters are optimized with; differential evolution, genetic algorithm, particle swarm optimization and quantum-behaved particle swarm optimization. In addition to these controllers, a novel algorithm named as improved quantum particle swarm optimization is proposed as a part of this research. The simulation and real-life implementation on the experimental set results of these controllers are discussed in this paper.