{"title":"Approximating a data stream for querying and estimation: algorithms and performance evaluation","authors":"S. Guha, Nick Koudas","doi":"10.1109/ICDE.2002.994775","DOIUrl":null,"url":null,"abstract":"Obtaining fast and good-quality approximations to data distributions is a problem of central interest to database management. A variety of popular database applications, including approximate querying, similarity searching and data mining in most application domains, rely on such good-quality approximations. Histogram-based approximation is a very popular method in database theory and practice to succinctly represent a data distribution in a space-efficient manner. In this paper, we place the problem of histogram construction into perspective and we generalize it by raising the requirement of a finite data set and/or known data set size. We consider the case of an infinite data set in which data arrive continuously, forming an infinite data stream. In this context, we present single-pass algorithms that are capable of constructing histograms of provable good quality. We present algorithms for the fixed-window variant of the basic histogram construction problem, supporting incremental maintenance of the histograms. The proposed algorithms trade accuracy for speed and allow for a graceful tradeoff between the two, based on application requirements. In the case of approximate queries on infinite data streams, we present a detailed experimental evaluation comparing our algorithms with other applicable techniques using real data sets, demonstrating the superiority of our proposal.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109
Abstract
Obtaining fast and good-quality approximations to data distributions is a problem of central interest to database management. A variety of popular database applications, including approximate querying, similarity searching and data mining in most application domains, rely on such good-quality approximations. Histogram-based approximation is a very popular method in database theory and practice to succinctly represent a data distribution in a space-efficient manner. In this paper, we place the problem of histogram construction into perspective and we generalize it by raising the requirement of a finite data set and/or known data set size. We consider the case of an infinite data set in which data arrive continuously, forming an infinite data stream. In this context, we present single-pass algorithms that are capable of constructing histograms of provable good quality. We present algorithms for the fixed-window variant of the basic histogram construction problem, supporting incremental maintenance of the histograms. The proposed algorithms trade accuracy for speed and allow for a graceful tradeoff between the two, based on application requirements. In the case of approximate queries on infinite data streams, we present a detailed experimental evaluation comparing our algorithms with other applicable techniques using real data sets, demonstrating the superiority of our proposal.