Automatic extraction of pornographic contents using radon transform based audio features

Myungjong Kim, Hoirin Kim
{"title":"Automatic extraction of pornographic contents using radon transform based audio features","authors":"Myungjong Kim, Hoirin Kim","doi":"10.1109/CBMI.2011.5972546","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of classifying pornographic sounds, such as sexual scream or moan, to detect and block the objectionable multimedia contents. To represent the large temporal variations of pornographic sounds, we propose a novel feature extraction method based on Radon transform. Radon transform provides a way to extract the global trend of orientations in a 2-D region and therefore it is applicable to the time-frequency spectrograms in the long-range segment to capture the large temporal variations of sexual sounds. Radon feature is extracted using histograms and flux of Radon coefficients. We adopt Gaussian mixture model to statistically represent the pornographic and non-pornographic sounds, and the test sounds are classified by using likelihood ratio test. Evaluations on several hundred pornographic and non-pornographic sound clips indicate that the proposed features can achieve satisfactory results that this approach could be used as an alternative to the image-based methods.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper focuses on the problem of classifying pornographic sounds, such as sexual scream or moan, to detect and block the objectionable multimedia contents. To represent the large temporal variations of pornographic sounds, we propose a novel feature extraction method based on Radon transform. Radon transform provides a way to extract the global trend of orientations in a 2-D region and therefore it is applicable to the time-frequency spectrograms in the long-range segment to capture the large temporal variations of sexual sounds. Radon feature is extracted using histograms and flux of Radon coefficients. We adopt Gaussian mixture model to statistically represent the pornographic and non-pornographic sounds, and the test sounds are classified by using likelihood ratio test. Evaluations on several hundred pornographic and non-pornographic sound clips indicate that the proposed features can achieve satisfactory results that this approach could be used as an alternative to the image-based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于氡变换的音频特征自动提取色情内容
本文主要研究色情声音的分类问题,如性尖叫或性呻吟,以检测和屏蔽令人反感的多媒体内容。针对色情声音的大时间变化特征,提出了一种基于Radon变换的特征提取方法。Radon变换提供了一种在二维区域中提取全局方向趋势的方法,因此它适用于远程段的时频谱图,以捕捉性声音的大时间变化。利用Radon系数的直方图和通量提取Radon特征。我们采用高斯混合模型对色情和非色情声音进行统计表示,并使用似然比检验对测试声音进行分类。对数百个色情和非色情声音片段的评估表明,所提出的特征可以达到令人满意的结果,该方法可以用作基于图像的方法的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient method for the unsupervised discovery of signalling motifs in large audio streams Efficient video summarization and retrieval tools Tonal-based retrieval of Arabic and middle-east music by automatic makam description Automatic illustration with cross-media retrieval in large-scale collections Interactive social, spatial and temporal querying for multimedia retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1