Evolutionary algorithm with convergence speed controller for automated software test data generation problem

Fangqing Liu, Han Huang, Z. Hao
{"title":"Evolutionary algorithm with convergence speed controller for automated software test data generation problem","authors":"Fangqing Liu, Han Huang, Z. Hao","doi":"10.1109/CEC.2017.7969400","DOIUrl":null,"url":null,"abstract":"Software testing is an important process of software development. One of the challenges in testing software is to generate test cases which help to reveal errors. Automated software test data generation problem is hard because it needs to search the whole feasible area to find test cases covering all possible paths under acceptable time consumption. In this paper, evolutionary algorithm with convergence speed controller (EA-CSC) is presented for using the least test case overhead in solving automated test case generation problem. EA-CSC is designed as a framework which have fast convergence speed and capability to jump out of the local optimal solution over a range of problems. There are two critical steps in EA-CSC. The adaptive step size searching method accelerates the convergence speed of EA. The mutation operator can disrupt the population distribution and slows down the convergence process of EA. Moreover, the EA-CSC results are compared to the algorithms tested on the same benchmark problems, showing strong competitive.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Software testing is an important process of software development. One of the challenges in testing software is to generate test cases which help to reveal errors. Automated software test data generation problem is hard because it needs to search the whole feasible area to find test cases covering all possible paths under acceptable time consumption. In this paper, evolutionary algorithm with convergence speed controller (EA-CSC) is presented for using the least test case overhead in solving automated test case generation problem. EA-CSC is designed as a framework which have fast convergence speed and capability to jump out of the local optimal solution over a range of problems. There are two critical steps in EA-CSC. The adaptive step size searching method accelerates the convergence speed of EA. The mutation operator can disrupt the population distribution and slows down the convergence process of EA. Moreover, the EA-CSC results are compared to the algorithms tested on the same benchmark problems, showing strong competitive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于收敛速度控制器的软件测试数据自动生成进化算法
软件测试是软件开发的一个重要过程。测试软件的挑战之一是生成有助于揭示错误的测试用例。自动化的软件测试数据生成问题是困难的,因为它需要在可接受的时间消耗下搜索整个可行区域,以找到覆盖所有可能路径的测试用例。本文提出了带收敛速度控制器的进化算法(EA-CSC),以最小的测试用例开销来解决自动化测试用例生成问题。EA-CSC被设计成一个收敛速度快、能够在一系列问题上跳出局部最优解的框架。EA-CSC有两个关键步骤。自适应步长搜索方法加快了EA的收敛速度,突变算子破坏了种群分布,减缓了EA的收敛过程。此外,将EA- csc结果与同一基准问题上测试的算法进行了比较,显示出较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1