Non-Gradient Based PDF Approximation for Sensor Selection in Cognitive Sensor Networks

Mohammad Reza Ghavidel Aghdam, R. Abdolee, S. K. S. Sahbari, B. M. Tazehkand
{"title":"Non-Gradient Based PDF Approximation for Sensor Selection in Cognitive Sensor Networks","authors":"Mohammad Reza Ghavidel Aghdam, R. Abdolee, S. K. S. Sahbari, B. M. Tazehkand","doi":"10.4018/IJITN.2019010101","DOIUrl":null,"url":null,"abstract":"Energy consumption in detection is a key objective for cognitive sensor network. Therefore, measuring the energy consumption is an important issue for efficient spectrum sensing. In order to compute the consumed energy at sensor nodes, their energy probability density function (PDF) is often required. In this article, the authors study the problem of spectrum sensing in cognitive networks and focus on strategies that can substantially affect the energy efficiency and complexity of such algorithms. In particular, they consider an energy detection mechanism in cooperative spectrum sensing where the knowledge of the energy PDF is the key. Since in practice the true value of such a PDF is unavailable, the authors propose to use non-gradient based optimization algorithms to find the parameters of approximated PDF function. In the proposed method, the corresponding PDF parameters are computed iteratively using Genetic and PSO algorithms. The numerical results show that the proposed technique outperforms prior methods.","PeriodicalId":120331,"journal":{"name":"Int. J. Interdiscip. Telecommun. Netw.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interdiscip. Telecommun. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITN.2019010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Energy consumption in detection is a key objective for cognitive sensor network. Therefore, measuring the energy consumption is an important issue for efficient spectrum sensing. In order to compute the consumed energy at sensor nodes, their energy probability density function (PDF) is often required. In this article, the authors study the problem of spectrum sensing in cognitive networks and focus on strategies that can substantially affect the energy efficiency and complexity of such algorithms. In particular, they consider an energy detection mechanism in cooperative spectrum sensing where the knowledge of the energy PDF is the key. Since in practice the true value of such a PDF is unavailable, the authors propose to use non-gradient based optimization algorithms to find the parameters of approximated PDF function. In the proposed method, the corresponding PDF parameters are computed iteratively using Genetic and PSO algorithms. The numerical results show that the proposed technique outperforms prior methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知传感器网络中传感器选择的非梯度PDF逼近
检测过程中的能量消耗是认知传感器网络的一个重要目标。因此,测量能量消耗是实现高效频谱传感的一个重要问题。为了计算传感器节点消耗的能量,通常需要它们的能量概率密度函数(PDF)。在这篇文章中,作者研究了认知网络中的频谱感知问题,并重点研究了能够显著影响此类算法的能效和复杂性的策略。特别地,他们考虑了协同频谱感知中的能量检测机制,其中能量PDF的知识是关键。由于实际中无法得到这种近似函数的真实值,作者建议使用非梯度优化算法来寻找近似函数的参数。在该方法中,采用遗传算法和粒子群算法迭代计算相应的PDF参数。数值结果表明,该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tutorial for Space-Time ICI Parallel Cancellation Techniques for OFDM Systems Secure Protocol for Resource-Constrained IoT Device Authentication Cyclotomic Construction of Sparse Code Multiple Access With Improved Diversity Lapa Card: A Smart Membership Card for Authentication, Payments, and Directional Marketing Analysis of ADC Quantization and Clipping Effects on CDMA-OQAM-OFDM-Based WSAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1