Combining the Likelihood and the Kullback-Leibler Distance in Estimating the Universal Background Model for Speaker Verification Using SVM

Zhenchun Lei
{"title":"Combining the Likelihood and the Kullback-Leibler Distance in Estimating the Universal Background Model for Speaker Verification Using SVM","authors":"Zhenchun Lei","doi":"10.1109/ICPR.2010.1106","DOIUrl":null,"url":null,"abstract":"The state-of-the-art methods for speaker verification are based on the support vector machine. The Gaussian supervector SVM is a typical method which uses the Gaussian mixture model for creating “feature vectors” for the discriminative SVM. And all GMMs are adapted from the same universal background model, which is got by maximum likelihood estimation on a large number of data sets. So the UBM should cover the feature space widely as possible. We propose a new method to estimate the parameters of the UBM by combining the likelihood and the Kullback-Leibler distances in the UBM. Its aim is to find the model parameters which get the high likelihood value and all Gaussian distributions are dispersed to cover the feature space in a great measuring. Experiments on NIST 2001 task show that our method can improve the performance obviously.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The state-of-the-art methods for speaker verification are based on the support vector machine. The Gaussian supervector SVM is a typical method which uses the Gaussian mixture model for creating “feature vectors” for the discriminative SVM. And all GMMs are adapted from the same universal background model, which is got by maximum likelihood estimation on a large number of data sets. So the UBM should cover the feature space widely as possible. We propose a new method to estimate the parameters of the UBM by combining the likelihood and the Kullback-Leibler distances in the UBM. Its aim is to find the model parameters which get the high likelihood value and all Gaussian distributions are dispersed to cover the feature space in a great measuring. Experiments on NIST 2001 task show that our method can improve the performance obviously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合似然和Kullback-Leibler距离估计基于支持向量机的说话人验证通用背景模型
最先进的说话人验证方法是基于支持向量机的。高斯超向量支持向量机是利用高斯混合模型为判别支持向量机创建“特征向量”的一种典型方法。所有的gmm都来自同一个通用背景模型,该模型是通过对大量数据集的极大似然估计得到的。因此,UBM应该尽可能广泛地覆盖特征空间。我们提出了一种结合似然和库尔贝克-莱伯勒距离来估计模型参数的新方法。它的目的是寻找得到高似然值的模型参数,并且所有的高斯分布都是分散的,以覆盖大量的特征空间。在NIST 2001任务上的实验表明,该方法可以明显提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comprehensive Evaluation on Non-deterministic Motion Estimation Coarse Scale Feature Extraction Using the Spiral Architecture Structure Research the Performance of a Recursive Algorithm of the Local Discrete Wavelet Transform Underwater Mine Classification with Imperfect Labels Scribe Identification in Medieval English Manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1