A Classification Algorithm to Distinguish Image as Haze or Non-haze

Xiaoliang Yu, Chuangbai Xiao, M. Deng, Li Peng
{"title":"A Classification Algorithm to Distinguish Image as Haze or Non-haze","authors":"Xiaoliang Yu, Chuangbai Xiao, M. Deng, Li Peng","doi":"10.1109/ICIG.2011.22","DOIUrl":null,"url":null,"abstract":"The technology of image dehazing can only work for haze images, but in batch and real-time processing, only relying on human visual system judge whether the image is haze or non-haze image, is unrealistic, so how to determine whether there are haze or non-haze images is needed to be solved. In this paper, we proposed a method to judge whether a given image is haze. According to the difference between the haze and non-haze images, we extract three eigen values, including image visibility, intensity of dark channel and image contrast, then combine with support vector machine to make judgment of image state which is haze or non-haze, obtaining high recognition rate. Experimental results show that our method is feasible and effective. Our method for bath and real-time processing provide the basis for judging image state, promoting the wide application of image dehazing.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

The technology of image dehazing can only work for haze images, but in batch and real-time processing, only relying on human visual system judge whether the image is haze or non-haze image, is unrealistic, so how to determine whether there are haze or non-haze images is needed to be solved. In this paper, we proposed a method to judge whether a given image is haze. According to the difference between the haze and non-haze images, we extract three eigen values, including image visibility, intensity of dark channel and image contrast, then combine with support vector machine to make judgment of image state which is haze or non-haze, obtaining high recognition rate. Experimental results show that our method is feasible and effective. Our method for bath and real-time processing provide the basis for judging image state, promoting the wide application of image dehazing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种区分图像雾霾与非雾霾的分类算法
图像去雾技术只能对雾霾图像起作用,但在批量和实时处理中,仅仅依靠人类视觉系统判断图像是雾霾图像还是非雾霾图像,是不现实的,因此如何判断是否存在雾霾或非雾霾图像是需要解决的。本文提出了一种判断给定图像是否为雾霾的方法。根据雾霾图像与非雾霾图像的差异,提取图像可见度、暗通道强度和图像对比度三个特征值,结合支持向量机对图像状态进行雾霾或非雾霾的判断,获得了较高的识别率。实验结果表明,该方法是可行和有效的。该方法为图像状态的判断提供了依据,促进了图像去雾技术的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1