A Self-Adaptive Collaborative Multi-Agent based Traffic Signal Timing System

Behnam Torabi, R. Wenkstern, Robert Saylor
{"title":"A Self-Adaptive Collaborative Multi-Agent based Traffic Signal Timing System","authors":"Behnam Torabi, R. Wenkstern, Robert Saylor","doi":"10.1109/ISC2.2018.8656659","DOIUrl":null,"url":null,"abstract":"In this paper, we present DALI, a self-adaptive, collaborative multi-agent Traffic Signal Timing system (TST). Intersection controller agents collaborate with one another and adapt their timing plans based on the traffic conditions. Reinforcement learning is used to optimize values for the various thresholds necessary to dynamically determine the scope of collaboration between the agents. DALI was implement in MATISSE 3.0, a large-scale agent-based micro-simulator. Experimental results show an improvement over traditional and reinforcement learning TSTs.","PeriodicalId":344652,"journal":{"name":"2018 IEEE International Smart Cities Conference (ISC2)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2018.8656659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present DALI, a self-adaptive, collaborative multi-agent Traffic Signal Timing system (TST). Intersection controller agents collaborate with one another and adapt their timing plans based on the traffic conditions. Reinforcement learning is used to optimize values for the various thresholds necessary to dynamically determine the scope of collaboration between the agents. DALI was implement in MATISSE 3.0, a large-scale agent-based micro-simulator. Experimental results show an improvement over traditional and reinforcement learning TSTs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多智能体的自适应协同交通信号配时系统
本文提出了一种自适应、协作的多智能体交通信号配时系统(TST)。交叉口控制代理之间相互协作,并根据交通状况调整其定时计划。强化学习用于优化动态确定代理之间协作范围所需的各种阈值。DALI是在MATISSE 3.0中实现的,MATISSE 3.0是一个大型的基于agent的微模拟器。实验结果表明,与传统的强化学习测试相比,该方法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Approach to Short-Term Traffic Flow Prediction: A Case Study of Interstate 64 in Missouri Feature selection embedded subspace clustering with low-rank and locality constraints Optimal User Association in Hybrid WLANs under Bandwidth Constraints Evolution of autograph signature to advanced electronic signature in smart cities environment A Unique Approach to Demand Side Management of Electric Vehicle Charging for Developing Countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1