Network Planning Analysis of 5G Millimeter-Wave Deployment in Indonesia’s Dense Urban Area

M. I. Nashiruddin, Putri Rahmawati, M. Nugraha
{"title":"Network Planning Analysis of 5G Millimeter-Wave Deployment in Indonesia’s Dense Urban Area","authors":"M. I. Nashiruddin, Putri Rahmawati, M. Nugraha","doi":"10.1109/uemcon53757.2021.9666724","DOIUrl":null,"url":null,"abstract":"An essential resource for the deployment of 5G technology is the frequency spectrum. A high spectrum provides high data rates and a large bandwidth to support many new devices, applications, and services that meet the needs across multiple domains. However, a high spectrum has a smaller range (10–100 m2) with a sub-6 GHz spectrum. So, it takes careful design for 5G implementation using high frequencies (mmWave). As a result, this research will plan a 5G New Radio (NR) network implementation employing a 28 GHz mmWave frequency. The dense urban scenario research design was carried out by selecting Central Jakarta as the research object. Central Jakarta was chosen as a pilot project because it is feasible in market potential and infrastructure support to pre-pare 5G implementation in Indonesia. The capacity approach considers the data rate and users, while the coverage approach considers Maximum Allowable Path Loss (MAPL) parameters and path loss propagation. A propagation model based on 3GPP TS 38.901 UMi Street. The results of this study indicate that Central Jakarta requires a traffic demand of 4.72 Gbps/km2. In addition, the deployment of a 5G NR network with mmWave frequency based on the capacity planning approach requires 33 uplink and 12 downlink gNobeB. As a result, the coverage area necessitates 738 uplink gNodeB with a coverage area of 69 m2 and 130 downlink gNodeB with a coverage area of 370 m2. Based on these results, the gNodeB needed for Central Jakarta was selected based on downlink coverage with 738 gNodeB.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An essential resource for the deployment of 5G technology is the frequency spectrum. A high spectrum provides high data rates and a large bandwidth to support many new devices, applications, and services that meet the needs across multiple domains. However, a high spectrum has a smaller range (10–100 m2) with a sub-6 GHz spectrum. So, it takes careful design for 5G implementation using high frequencies (mmWave). As a result, this research will plan a 5G New Radio (NR) network implementation employing a 28 GHz mmWave frequency. The dense urban scenario research design was carried out by selecting Central Jakarta as the research object. Central Jakarta was chosen as a pilot project because it is feasible in market potential and infrastructure support to pre-pare 5G implementation in Indonesia. The capacity approach considers the data rate and users, while the coverage approach considers Maximum Allowable Path Loss (MAPL) parameters and path loss propagation. A propagation model based on 3GPP TS 38.901 UMi Street. The results of this study indicate that Central Jakarta requires a traffic demand of 4.72 Gbps/km2. In addition, the deployment of a 5G NR network with mmWave frequency based on the capacity planning approach requires 33 uplink and 12 downlink gNobeB. As a result, the coverage area necessitates 738 uplink gNodeB with a coverage area of 69 m2 and 130 downlink gNodeB with a coverage area of 370 m2. Based on these results, the gNodeB needed for Central Jakarta was selected based on downlink coverage with 738 gNodeB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度尼西亚密集城区 5G 毫米波部署的网络规划分析
频谱是部署 5G 技术的重要资源。高频谱可提供高数据传输速率和大带宽,支持满足多领域需求的许多新设备、应用和服务。然而,与 6 GHz 以下频谱相比,高频谱的范围较小(10-100 平方米)。因此,使用高频(毫米波)实施 5G 需要精心设计。因此,本研究将规划采用 28 GHz 毫米波频率的 5G 新无线电(NR)网络实施方案。通过选择雅加达市中心作为研究对象,进行了密集城市场景研究设计。之所以选择雅加达市中心作为试点项目,是因为该地区在市场潜力和基础设施支持方面具有可行性,可为印尼的 5G 实施做好前期准备。容量方法考虑了数据速率和用户,而覆盖方法则考虑了最大允许路径损耗(MAPL)参数和路径损耗传播。传播模型基于 3GPP TS 38.901 UMi Street。研究结果表明,雅加达市中心需要 4.72 Gbps/km2 的流量需求。此外,根据容量规划方法部署毫米波频率的 5G NR 网络需要 33 个上行链路和 12 个下行链路 gNobeB。因此,覆盖区域需要 738 个上行 gNodeB(覆盖面积为 69 平方米)和 130 个下行 gNodeB(覆盖面积为 370 平方米)。根据上述结果,雅加达市中心所需的 gNodeB 是根据 738 个 gNodeB 的下行链路覆盖范围选定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy-Aware Task Migration Through Ant-Colony Optimization for Multiprocessors A Personalized Virtual Learning Environment Using Multiple Modeling Techniques Development of Security System for Ready Made Garments (RMG) Industry in Bangladesh Design of an IoT Based Gas Wastage Monitoring, Leakage Detecting and Alerting System Artificial intelligence (AI) to study self-discharge batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1