Machine-Learning-Based Deconvolution Method Provides High-Resolution Fast Inversion of Induction Log Data

{"title":"Machine-Learning-Based Deconvolution Method Provides High-Resolution Fast Inversion of Induction Log Data","authors":"","doi":"10.30632/pjv64n2-2023a10","DOIUrl":null,"url":null,"abstract":"We built a deconvolution model for induction log data using machine learning (ML). Unlike iterative forward modeling inversion methods, the deconvolution model is extremely fast. Unlike linear deconvolution models in the past, ML-based deconvolution finds accurate layer resistivity and layer boundaries. For a unit induction tool 2C40, the 21-point, 10-ft window deconvolution model works satisfactorily.","PeriodicalId":170688,"journal":{"name":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/pjv64n2-2023a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We built a deconvolution model for induction log data using machine learning (ML). Unlike iterative forward modeling inversion methods, the deconvolution model is extremely fast. Unlike linear deconvolution models in the past, ML-based deconvolution finds accurate layer resistivity and layer boundaries. For a unit induction tool 2C40, the 21-point, 10-ft window deconvolution model works satisfactorily.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的反褶积方法提供了感应测井数据的高分辨率快速反演
我们使用机器学习(ML)为感应测井数据建立了一个反卷积模型。与迭代正演反演方法不同,反褶积模型的速度非常快。与过去的线性反褶积模型不同,基于ml的反褶积模型可以精确地找到层电阻率和层边界。对于单元感应工具2C40, 21点,10英尺窗口反褶积模型工作满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Geological Facies Analysis in Crust-Mantle Transition Zone Petrophysical Analyses for Supporting the Search for a Claystone-Hosted Nuclear Repository A New R35 and Fractal Joint Rock Typing Method Using MICP Analysis: A Case Study in Middle East Iraq Nuclear Logging in Geological Probing for a Low-Carbon Energy Future – A New Frontier? Underground Hydrogen Storage in Porous Media: The Potential Role of Petrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1