Performance comparison of parallel asynchronous multi-objective evolutionary algorithm with different asynchrony

Tomohiro Harada, K. Takadama
{"title":"Performance comparison of parallel asynchronous multi-objective evolutionary algorithm with different asynchrony","authors":"Tomohiro Harada, K. Takadama","doi":"10.1109/CEC.2017.7969444","DOIUrl":null,"url":null,"abstract":"This paper proposes a parallel asynchronous evolutionary algorithm (EA) with different asynchrony and verifies its effectiveness on multi-objective optimization problems. We represent such EA with different asynchrony as semi-asynchronous EA. The semi-asynchronous EA continuously evolves solutions whenever a part of solutions in the population completes their evaluations in the master-slave parallel computation environment, unlike a conventional synchronous EA, which waits for evaluations of all solutions to generate next population. To establish the semi-asynchronous EA, this paper proposes the asynchrony parameter to decide how many solutions are waited, and clarifies the effectual asynchrony related to the number of slave nodes. In the experiment, we apply the semi-asynchronous EA to NSGA-II, which is a well-known multi-objective evolutionary algorithm, and the semi-asynchronous NSGA-IIs with different asynchrony are compared with synchronous one on the multi-objective optimization benchmark problems with several variances of evaluation time. The experimental result reveals that the semi-asynchronous NSGA-II with low asynchrony has possibility to perform the best search ability than the complete asynchronous and the synchronous NSGA-II in the optimization problems with large variance of evaluation time.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes a parallel asynchronous evolutionary algorithm (EA) with different asynchrony and verifies its effectiveness on multi-objective optimization problems. We represent such EA with different asynchrony as semi-asynchronous EA. The semi-asynchronous EA continuously evolves solutions whenever a part of solutions in the population completes their evaluations in the master-slave parallel computation environment, unlike a conventional synchronous EA, which waits for evaluations of all solutions to generate next population. To establish the semi-asynchronous EA, this paper proposes the asynchrony parameter to decide how many solutions are waited, and clarifies the effectual asynchrony related to the number of slave nodes. In the experiment, we apply the semi-asynchronous EA to NSGA-II, which is a well-known multi-objective evolutionary algorithm, and the semi-asynchronous NSGA-IIs with different asynchrony are compared with synchronous one on the multi-objective optimization benchmark problems with several variances of evaluation time. The experimental result reveals that the semi-asynchronous NSGA-II with low asynchrony has possibility to perform the best search ability than the complete asynchronous and the synchronous NSGA-II in the optimization problems with large variance of evaluation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同异步度下并行异步多目标进化算法的性能比较
提出了一种不同异步度的并行异步进化算法,并验证了其在多目标优化问题上的有效性。我们将这种具有不同异步性的EA表示为半异步EA。半异步EA在主从并行计算环境中,当种群中的一部分解完成它们的评估时,就会不断地演化出解决方案,而传统的同步EA则需要等待所有解的评估才能生成下一个种群。为了建立半异步EA,本文提出了异步参数来决定等待多少个解,并明确了有效异步与从节点数量的关系。在实验中,我们将半异步EA算法应用于著名的多目标进化算法NSGA-II,并在具有多个评估时间方差的多目标优化基准问题上,对具有不同异步性的半异步NSGA-II与同步NSGA-II进行比较。实验结果表明,在求解时间方差较大的优化问题中,具有低异步性的半异步NSGA-II有可能比完全异步和同步NSGA-II表现出最佳的搜索能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1