TÉCNICA REDES NEURAIS ARTIFICIAIS APLICADA NA DETECÇÃO DE ATRITO COM CLIENTES E OPORTUNIDADES DE NOVOS NEGÓCIOS

Christina Testa Marques, R. S. Bôaventura, Keiji Yamanaka
{"title":"TÉCNICA REDES NEURAIS ARTIFICIAIS APLICADA NA DETECÇÃO DE ATRITO COM CLIENTES E OPORTUNIDADES DE NOVOS NEGÓCIOS","authors":"Christina Testa Marques, R. S. Bôaventura, Keiji Yamanaka","doi":"10.37423/211004894","DOIUrl":null,"url":null,"abstract":"The proposed system can detect the concern with customers before losing them, aiming at the growth and sustainability of the company. This study aims proposes to classify the company's customers into groups with similar profiles. This will allow the company to offer new products to customers in accordance with to the features listed in the group and avoid evasion The proposed system was developed using the technology of artificial neural network model using the Self Organizing Maps network . The neural network model has 55 entries withdrawn from a database composed of 500 customers. 1","PeriodicalId":149300,"journal":{"name":"Engenharia: a máquina que constrói o futuro","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia: a máquina que constrói o futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37423/211004894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proposed system can detect the concern with customers before losing them, aiming at the growth and sustainability of the company. This study aims proposes to classify the company's customers into groups with similar profiles. This will allow the company to offer new products to customers in accordance with to the features listed in the group and avoid evasion The proposed system was developed using the technology of artificial neural network model using the Self Organizing Maps network . The neural network model has 55 entries withdrawn from a database composed of 500 customers. 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络技术应用于检测与客户的摩擦和新商机
该系统可以在客户流失之前发现客户的担忧,旨在实现公司的增长和可持续发展。本研究的目的是提出将公司的客户分类为具有相似概况的群体。这将使公司能够根据组中列出的特征向客户提供新产品,避免规避。该系统采用了使用自组织地图网络的人工神经网络模型技术开发。神经网络模型从500个客户组成的数据库中提取了55个条目。1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposta de Metodologia para Melhoria do Desempenho do Sistema de Gestão no Novo Sindicalismo Brasileiro Após a Reforma Trabalhista INFLUÊNCIA DA PROTOTIPAGEM 3D NO ENSINO DE CIÊNCIAS DOS MATERIAIS METODOLOGIA DE PRIORIZAÇÃO DE MANUTENÇÕES EM EQUIPAMENTOS MÉDICOS DE UNIDADES DE TERAPIA INTENSIVA ALGORITMO DE DETERMINAÇÃO DE ÁREA FOLIAR DO TOMATE MODELO CONSTITUTIVO MCC HIPERPLÁSTICO COM DANO ACOPLADO APLICADO A SOLOS ESTRUTURADOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1