Biclustering of web usage data using gravitational search algorithm

V. Diviya Prabha, R. Rathipriya
{"title":"Biclustering of web usage data using gravitational search algorithm","authors":"V. Diviya Prabha, R. Rathipriya","doi":"10.1109/ICPRIME.2013.6496722","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient and new algorithm for biclustering of web usage data is presented, which is based on gravitational search algorithm. In the proposed algorithm, called BIC-GSA, the gravitational search algorithm is used to find a near optimal solution for biclustering problem. The benchmark clickstream dataset from UCI repository is used to evaluate and to study the performance of the presented algorithm. The results show that the proposed algorithm can find high quality biclusters in the tested dataset.","PeriodicalId":123210,"journal":{"name":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2013.6496722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, an efficient and new algorithm for biclustering of web usage data is presented, which is based on gravitational search algorithm. In the proposed algorithm, called BIC-GSA, the gravitational search algorithm is used to find a near optimal solution for biclustering problem. The benchmark clickstream dataset from UCI repository is used to evaluate and to study the performance of the presented algorithm. The results show that the proposed algorithm can find high quality biclusters in the tested dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用引力搜索算法对web使用数据进行双聚类
本文提出了一种基于引力搜索算法的高效的web使用数据双聚类算法。本文提出的双聚类算法(BIC-GSA)采用引力搜索算法求解双聚类问题的近似最优解。使用UCI知识库中的基准点击流数据集来评估和研究该算法的性能。结果表明,该算法能够在测试数据集中找到高质量的双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separable reversible data hiding using Rc4 algorithm Personal approach for mobile search: A review Bijective soft set based classification of medical data Deployment and power assignment problem in Wireless Sensor Networks for intruder detection application using MEA Protein sequence motif patterns using adaptive Fuzzy C-Means granular computing model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1