Search Engine Result Aggregation Using Analytical Hierarchy Process

A. De, Elizabeth D. Diaz, Vijay V. Raghavan
{"title":"Search Engine Result Aggregation Using Analytical Hierarchy Process","authors":"A. De, Elizabeth D. Diaz, Vijay V. Raghavan","doi":"10.1109/WI-IAT.2010.256","DOIUrl":null,"url":null,"abstract":"A metasearch engine queries search engines and collates information returned by them in one result set for the user. Metasearch can be external or internal. In external metasearch, result lists from external, independent search engines are merged. On the other hand, in an internal metasearch, result lists from using different search algorithms on the same corpus are aggregated. Thus result merging is a key function of metasearch. In this work, we propose a model for result merging that is based on the Analytic Hierarchy Process and compares documents and search engines in pair-wise comparison before merging. Our model has the capability to merge result lists based on ranks as well as scores, as returned by search engines. We use the LETOR 2 (LEarning TO Rank) dataset from Microsoft Research Asia for our experiments. When using document ranks, our model improves by 31.60% and 8.58% over the Borda-Fuse and Weighted Borda-Fuse models respectively. When using document scores the improvements are 42.92% and 18.03% respectively.","PeriodicalId":197966,"journal":{"name":"Web Intelligence/IAT Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence/IAT Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A metasearch engine queries search engines and collates information returned by them in one result set for the user. Metasearch can be external or internal. In external metasearch, result lists from external, independent search engines are merged. On the other hand, in an internal metasearch, result lists from using different search algorithms on the same corpus are aggregated. Thus result merging is a key function of metasearch. In this work, we propose a model for result merging that is based on the Analytic Hierarchy Process and compares documents and search engines in pair-wise comparison before merging. Our model has the capability to merge result lists based on ranks as well as scores, as returned by search engines. We use the LETOR 2 (LEarning TO Rank) dataset from Microsoft Research Asia for our experiments. When using document ranks, our model improves by 31.60% and 8.58% over the Borda-Fuse and Weighted Borda-Fuse models respectively. When using document scores the improvements are 42.92% and 18.03% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次分析法的搜索引擎结果聚合
元搜索引擎查询搜索引擎,并将它们返回的信息整理成一个结果集供用户使用。元搜索可以是外部的也可以是内部的。在外部元搜索中,来自外部独立搜索引擎的结果列表被合并。另一方面,在内部元搜索中,在同一语料库上使用不同搜索算法的结果列表被聚合。因此,结果合并是元搜索的一个关键功能。在这项工作中,我们提出了一个基于层次分析法的结果合并模型,并在合并之前对文档和搜索引擎进行配对比较。我们的模型具有根据搜索引擎返回的排名和分数合并结果列表的能力。我们使用微软亚洲研究院的LETOR 2 (LEarning TO Rank)数据集进行实验。当使用文档排名时,我们的模型分别比Borda-Fuse和加权Borda-Fuse模型提高了31.60%和8.58%。使用文献评分时,提高率分别为42.92%和18.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracing Strength of Relationships in Social Networks LiSTOMS: A Light-Weighted Self-Tuning Ontology Mapping System Careful Seeding Based on Independent Component Analysis for k-Means Clustering Content Propagation Analysis of E-mail Communications Towards Privacy Preserving Information Retrieval through Semantic Microaggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1