Iterative speaker adaptation for speech recognition

F.J. Scholtz, J. du Preez
{"title":"Iterative speaker adaptation for speech recognition","authors":"F.J. Scholtz, J. du Preez","doi":"10.1109/COMSIG.1992.274317","DOIUrl":null,"url":null,"abstract":"A speaker-independent speech recognition system is desirable in many applications where speaker-specific data does not exist. It speaker-independent data is available, the system could be adapted to the specific speaker, thereby reducing the recognition error rate. A new, unsupervised speaker adaptation scheme which requires no prior training phase is proposed. The algorithm improves the recognition rate as more speech data becomes available, making it most suitable for real-time implementation. In the tests conducted this algorithm yields an improvement of almost 50% on the recognition error rate.<<ETX>>","PeriodicalId":342857,"journal":{"name":"Proceedings of the 1992 South African Symposium on Communications and Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1992 South African Symposium on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1992.274317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A speaker-independent speech recognition system is desirable in many applications where speaker-specific data does not exist. It speaker-independent data is available, the system could be adapted to the specific speaker, thereby reducing the recognition error rate. A new, unsupervised speaker adaptation scheme which requires no prior training phase is proposed. The algorithm improves the recognition rate as more speech data becomes available, making it most suitable for real-time implementation. In the tests conducted this algorithm yields an improvement of almost 50% on the recognition error rate.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音识别中的迭代说话人自适应
在许多不存在特定说话人数据的应用中,需要独立于说话人的语音识别系统。如果有独立于说话人的数据,系统可以适应特定的说话人,从而降低识别错误率。提出了一种新的不需要预先训练阶段的无监督说话人自适应方案。随着语音数据的增多,该算法的识别率得到了提高,使其最适合于实时实现。在进行的测试中,该算法的识别错误率提高了近50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
P/sub epsilon /-derived S/N ratio: a novel ideal error probability performance reference for fading channels A new PCM codec test method with reduced real-time and signal processing requirements Omni-font character recognition using templates and neural networks Some unique properties and applications of perfect squares minimum phase CAZAC sequences Radar target recognition using multiple bounce scattering terms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1