Fast implementation of two-level compression method using QM-coder

K. Nguyen-Phi, H. Weinrichter
{"title":"Fast implementation of two-level compression method using QM-coder","authors":"K. Nguyen-Phi, H. Weinrichter","doi":"10.1109/DCC.1997.582123","DOIUrl":null,"url":null,"abstract":"We deal with bi-level image compression. Modern methods consider the bi-level image as a high order Markovian source, and by exploiting this characteristic, can attain better performance. At a first glance, the increasing of the order of the Markovian model in the modelling process should yield a higher compression ratio, but in fact, it is not true. A higher order model needs a longer time to learn (adaptively) the statistical characteristic of the source. If the source sequence, or the bi-level image in this case, is not long enough, then we do not have a stable model. One simple way to solve this problem is the two-level method. We consider the implementation aspects of this method. Instead of using the general arithmetic coder, an obvious alternative is using the QM-coder, thus reducing the memory used and increasing the execution speed. We discuss some possible heuristics to increase the performance. Experimental results obtained with the ITU-T test images are given.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with bi-level image compression. Modern methods consider the bi-level image as a high order Markovian source, and by exploiting this characteristic, can attain better performance. At a first glance, the increasing of the order of the Markovian model in the modelling process should yield a higher compression ratio, but in fact, it is not true. A higher order model needs a longer time to learn (adaptively) the statistical characteristic of the source. If the source sequence, or the bi-level image in this case, is not long enough, then we do not have a stable model. One simple way to solve this problem is the two-level method. We consider the implementation aspects of this method. Instead of using the general arithmetic coder, an obvious alternative is using the QM-coder, thus reducing the memory used and increasing the execution speed. We discuss some possible heuristics to increase the performance. Experimental results obtained with the ITU-T test images are given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用qm编码器快速实现两级压缩方法
我们处理双级图像压缩。现代方法将双层图像视为高阶马尔可夫源,利用这一特性可以获得更好的性能。乍一看,马尔可夫模型在建模过程中阶数的增加应该会产生更高的压缩比,但实际上并非如此。高阶模型需要更长的时间来(自适应地)学习源的统计特征。如果源序列,或者在这种情况下的双层图像不够长,那么我们就没有一个稳定的模型。解决这个问题的一个简单方法是两级方法。我们考虑了该方法的实现方面。一个明显的替代方案是使用qm编码器,而不是使用一般的算术编码器,这样可以减少所使用的内存并提高执行速度。我们讨论了一些可能的启发式方法来提高性能。给出了利用ITU-T测试图像得到的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust image coding with perceptual-based scalability Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework Region-based video coding with embedded zero-trees Progressive Ziv-Lempel encoding of synthetic images Compressing address trace data for cache simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1