A Greedy Search Algorithm for Resolving the Lowermost C Threshold in SVM Classification

Huichuan Duan, Naiwen Liu
{"title":"A Greedy Search Algorithm for Resolving the Lowermost C Threshold in SVM Classification","authors":"Huichuan Duan, Naiwen Liu","doi":"10.1109/CIS.2013.47","DOIUrl":null,"url":null,"abstract":"In this paper, the authors present a greedy search algorithm that solves the SVM classification (SVC) problem at the lowermost C end. By combining the SVC asymptotic behavior with empirical results, it can be sure that at sufficiently small cost, a threshold C0, all the minority samples becomes support vectors each with Lagrange multiplier C0, and equal number of majority samples will become support vectors whose Lagrange multipliers are also C0. With this evidence, SVC is transformed into a C-independent combinatorial optimization problem. Taking all the minority inputs as initial support vectors, a greedy algorithm is devised to choose majority class support vectors one by one each with minimal increase to the objective function in its turn. The greedy nature of the algorithm enables finding out the majority support vectors that near or at the majority margin. By taking the found majority support vectors initially and applying the algorithm to the minority class conversely, the support vectors that near the decision boundary are also resolved. Applying linear least squares fitting to both the majority margin and decision boundary, C0 is obtained as a function of kernel parameters. Experimental results show that the proposed algorithm can find C0 almost perfectly.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, the authors present a greedy search algorithm that solves the SVM classification (SVC) problem at the lowermost C end. By combining the SVC asymptotic behavior with empirical results, it can be sure that at sufficiently small cost, a threshold C0, all the minority samples becomes support vectors each with Lagrange multiplier C0, and equal number of majority samples will become support vectors whose Lagrange multipliers are also C0. With this evidence, SVC is transformed into a C-independent combinatorial optimization problem. Taking all the minority inputs as initial support vectors, a greedy algorithm is devised to choose majority class support vectors one by one each with minimal increase to the objective function in its turn. The greedy nature of the algorithm enables finding out the majority support vectors that near or at the majority margin. By taking the found majority support vectors initially and applying the algorithm to the minority class conversely, the support vectors that near the decision boundary are also resolved. Applying linear least squares fitting to both the majority margin and decision boundary, C0 is obtained as a function of kernel parameters. Experimental results show that the proposed algorithm can find C0 almost perfectly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种求解SVM分类中最小C阈值的贪心搜索算法
本文提出了一种贪心搜索算法,解决了支持向量机在C端最下端的分类问题。将SVC渐近行为与经验结果相结合,可以确定在足够小的代价(阈值为C0)下,所有少数派样本都成为每个拉格朗日乘子为C0的支持向量,相等数量的多数样本也成为拉格朗日乘子为C0的支持向量。在此基础上,将SVC问题转化为与c无关的组合优化问题。将所有少数派输入作为初始支持向量,设计了一种贪婪算法,以最小增量依次选择多数类支持向量。该算法的贪婪特性使其能够找出接近或处于多数边界的多数支持向量。通过初始化找到的多数支持向量,将算法反向应用于少数类,求解出靠近决策边界的支持向量。通过对多数边界和决策边界进行线性最小二乘拟合,得到了C0作为核参数的函数。实验结果表明,该算法几乎可以完美地找到C0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Co-op Advertising Analysis within a Supply Chain Based on the Three-Stage Non-cooperate Dynamic Game Model Study on Pseudorandomness of Some Pseudorandom Number Generators with Application The Superiority Analysis of Linear Frequency Modulation and Barker Code Composite Radar Signal The Improvement of the Commonly Used Linear Polynomial Selection Methods A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1