Machine learning and datamining methods for hybrid IoT intrusion detection

A. E. Ghazi, Ait Moulay Rachid
{"title":"Machine learning and datamining methods for hybrid IoT intrusion detection","authors":"A. E. Ghazi, Ait Moulay Rachid","doi":"10.1109/CloudTech49835.2020.9365895","DOIUrl":null,"url":null,"abstract":"By 2025 Internet of things will reach over 75 billion devices which would exceed number of humans about 8.1 billion. These devices need to be secured from many threats by implementing secure and interoperable solutions in order to guarantee a proper functioning of the infrastructures and systems using the IoT. This is why we proposed a hybrid intrusion detection system installed on the cloud powering another online and real time intrusion detection system on the fog to monitor the communication and detect attacks before it spreads over the network as in the case of Mirai botnet. We will provide details of the different algorithms used to implement this distributed system so as to detect attacks against IoT devices.","PeriodicalId":272860,"journal":{"name":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudTech49835.2020.9365895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

By 2025 Internet of things will reach over 75 billion devices which would exceed number of humans about 8.1 billion. These devices need to be secured from many threats by implementing secure and interoperable solutions in order to guarantee a proper functioning of the infrastructures and systems using the IoT. This is why we proposed a hybrid intrusion detection system installed on the cloud powering another online and real time intrusion detection system on the fog to monitor the communication and detect attacks before it spreads over the network as in the case of Mirai botnet. We will provide details of the different algorithms used to implement this distributed system so as to detect attacks against IoT devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合物联网入侵检测的机器学习和数据挖掘方法
到2025年,物联网设备将超过750亿台,超过81亿人。这些设备需要通过实施安全和可互操作的解决方案来保护免受许多威胁,以保证使用物联网的基础设施和系统的正常运行。这就是为什么我们提出了一个安装在云上的混合入侵检测系统,为另一个在线实时入侵检测系统提供动力,以监控通信并在攻击通过网络传播之前检测攻击,就像Mirai僵尸网络一样。我们将提供用于实现该分布式系统的不同算法的详细信息,以便检测针对物联网设备的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CloudTech 2020 Copyright Page An IoT data logging instrument for monitoring and early efficiency loss detection at a photovoltaic generation plant A cloud-based foundational infrastructure for water management ecosystem Medical Image Registration via Similarity Measure based on Convolutional Neural Network Quality Approach to Analyze the Causes of Failures in MOOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1