Large-Scale Face Recognition on Smart Devices

Jian-jun Hao, Yusuke Morishita, Toshinori Hosoi, K. Sakurai, Hitoshi Imaoka, Takao Imaizumi, Hideki Irisawa
{"title":"Large-Scale Face Recognition on Smart Devices","authors":"Jian-jun Hao, Yusuke Morishita, Toshinori Hosoi, K. Sakurai, Hitoshi Imaoka, Takao Imaizumi, Hideki Irisawa","doi":"10.1109/ACPR.2013.189","DOIUrl":null,"url":null,"abstract":"Most of highly accurate face recognition methods are not suitable for real-time requirement in smart devices which have computational limitations. In this demonstration, we exhibit a face recognition application, in which only essential facial features from images are used for personal identification. In the algorithm used in this application, the face feature size is dramatically compressed into 512 bytes per face in spite of high recognition rate, a false rejection rate of 1.6% at false acceptance rate of 0.1% on identification photos. Consequently, computational cost for face matching is reduced dramatically and the system achieves 1.16 million times matching/second in dual-core 1.5GHz ARM processor. The demonstration on the smart device shows a high recognition performance and the feasibility for diverse applications.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of highly accurate face recognition methods are not suitable for real-time requirement in smart devices which have computational limitations. In this demonstration, we exhibit a face recognition application, in which only essential facial features from images are used for personal identification. In the algorithm used in this application, the face feature size is dramatically compressed into 512 bytes per face in spite of high recognition rate, a false rejection rate of 1.6% at false acceptance rate of 0.1% on identification photos. Consequently, computational cost for face matching is reduced dramatically and the system achieves 1.16 million times matching/second in dual-core 1.5GHz ARM processor. The demonstration on the smart device shows a high recognition performance and the feasibility for diverse applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能设备上的大规模人脸识别
大多数高精度的人脸识别方法都不适合智能设备的实时性要求,因为智能设备的计算能力有限。在本演示中,我们展示了一个人脸识别应用程序,其中仅使用图像中的基本面部特征进行个人识别。在本应用程序中使用的算法中,人脸特征大小被显著压缩为每张人脸512字节,尽管识别率很高,识别照片的错误拒绝率为1.6%,错误接受率为0.1%。从而大大降低了人脸匹配的计算成本,在双核1.5GHz ARM处理器上实现了116万次/秒的匹配。在智能设备上的演示表明,该方法具有较高的识别性能和多种应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1