Towards detailed whole body group analysis in nuclear medicine

N. Ferreira, F. Caramelo, A. Liborio, M. Botelho, S. Carvalho, L. Mendes, R. Faustino, M. Ribeiro, A. Rodrigues
{"title":"Towards detailed whole body group analysis in nuclear medicine","authors":"N. Ferreira, F. Caramelo, A. Liborio, M. Botelho, S. Carvalho, L. Mendes, R. Faustino, M. Ribeiro, A. Rodrigues","doi":"10.1109/ENBENG.2011.6026069","DOIUrl":null,"url":null,"abstract":"In this work we describe a project that is currently in progress. We point out the key ideas of the project explaining the pros and cons of the chosen approach. A clinic with image facilities produces a huge amount of information per year that, most of the times, is underused since exams are analyzed individually without the comparison between individuals or the exploration of features of a certain population. Data mining would be recommendable in these cases, however image databases are difficult to analyze because they depend on robust and automatic methods of segmentation and classification. We propose a method for segmenting nuclear medicine images (whole body PET scans) based on a classification method. The segmented regions are also labeled and used as additional features for a structured database.","PeriodicalId":206538,"journal":{"name":"1st Portuguese Biomedical Engineering Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st Portuguese Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENBENG.2011.6026069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work we describe a project that is currently in progress. We point out the key ideas of the project explaining the pros and cons of the chosen approach. A clinic with image facilities produces a huge amount of information per year that, most of the times, is underused since exams are analyzed individually without the comparison between individuals or the exploration of features of a certain population. Data mining would be recommendable in these cases, however image databases are difficult to analyze because they depend on robust and automatic methods of segmentation and classification. We propose a method for segmenting nuclear medicine images (whole body PET scans) based on a classification method. The segmented regions are also labeled and used as additional features for a structured database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向核医学中详细的全身群分析
在本文中,我们描述了一个目前正在进行的项目。我们指出了项目的关键思想,解释了所选方法的优点和缺点。拥有影像设备的诊所每年会产生大量的信息,但大多数情况下,这些信息没有得到充分利用,因为检查是单独分析的,没有对个体进行比较,也没有对特定人群的特征进行探索。在这些情况下,数据挖掘是可取的,但是图像数据库很难分析,因为它们依赖于鲁棒和自动的分割和分类方法。提出了一种基于分类方法的核医学图像(全身PET扫描)分割方法。分割的区域也被标记并用作结构化数据库的附加特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
neuroCornea — Diabetic peripheral neuropathy early diagnosis and follow-up through in vivo automatic analysis of corneal nerves morphology Legionella: Bioactive nano-filters for air purification systems Laser Doppler flowmeters for microcirculation measurements A cardiac signal monitoring and processing system OMICS approaches to reveal Burkholderia cenocepacia adaptive strategies to long-term residence in the lungs of cystic fibrosis patients under antibiotic therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1