Adaptive selection of search space in look ahead orthogonal matching pursuit

Sooraj K. Ambat, S. Chatterjee, K. Hari
{"title":"Adaptive selection of search space in look ahead orthogonal matching pursuit","authors":"Sooraj K. Ambat, S. Chatterjee, K. Hari","doi":"10.1109/NCC.2012.6176852","DOIUrl":null,"url":null,"abstract":"Compressive Sensing theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate and computational complexity of the measurement system. In recent years, many recovery algorithms were proposed to reconstruct the signal efficiently. Look Ahead OMP (LAOMP) is a recently proposed method which uses a look ahead strategy and performs significantly better than other greedy methods. In this paper, we propose a modification to the LAOMP algorithm to choose the look ahead parameter L adaptively, thus reducing the complexity of the algorithm, without compromising on the performance. The performance of the algorithm is evaluated through Monte Carlo simulations.","PeriodicalId":178278,"journal":{"name":"2012 National Conference on Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2012.6176852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Compressive Sensing theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate and computational complexity of the measurement system. In recent years, many recovery algorithms were proposed to reconstruct the signal efficiently. Look Ahead OMP (LAOMP) is a recently proposed method which uses a look ahead strategy and performs significantly better than other greedy methods. In this paper, we propose a modification to the LAOMP algorithm to choose the look ahead parameter L adaptively, thus reducing the complexity of the algorithm, without compromising on the performance. The performance of the algorithm is evaluated through Monte Carlo simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前瞻正交匹配追踪中搜索空间的自适应选择
压缩感知理论将信号采样与稀疏信号压缩相结合,降低了测量系统的采样率和计算复杂度。近年来,为了有效地重建信号,提出了许多恢复算法。LAOMP (Look Ahead OMP)是最近提出的一种方法,它使用了一种前瞻性策略,并且性能明显优于其他贪婪方法。本文提出对LAOMP算法进行改进,自适应地选择前瞻参数L,从而在不影响性能的前提下降低了算法的复杂度。通过蒙特卡洛仿真对算法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantized modulation diversity for 64-QAM IITKGP-MLILSC speech database for language identification Strip lined - Truncated ground plane for flat response of miniaturized UWB patch antenna On the underwater wireless network clustering Faster BIC segmentation using local speaker modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1