Pruning algorithm of convolutional neural network based on optimal threshold

Jianjun Wang, Leshan Liu, Ximeng Pan
{"title":"Pruning algorithm of convolutional neural network based on optimal threshold","authors":"Jianjun Wang, Leshan Liu, Ximeng Pan","doi":"10.1145/3395260.3395300","DOIUrl":null,"url":null,"abstract":"In the process of pruning, in order to automatically obtain an optimal pruning threshold that can balance the maximum sparse rate and the minimum error. This paper proposes a convolutional neural network pruning algorithm based on the optimal threshold. The algorithm uses the optimization ability of the greedy algorithm to select an optimal threshold, and uses the sensitivity and correlation of the node as factors to determine whether the node is important. Then by deleting the nodes whose importance is below the optimal threshold, the purpose of pruning the network is achieved. Experiments show that under the premise of loss accuracy within 2%, the algorithm can test the Lenet-5 network pruning on the M-NIST data set, which can accelerate 36.62%. This algorithm tests the VggNet network pruning on the CIFAR-10 dataset, which can speed up 43.86%. Experiments show that the algorithm effectively reduces network parameters and reduces running time.","PeriodicalId":103490,"journal":{"name":"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395260.3395300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the process of pruning, in order to automatically obtain an optimal pruning threshold that can balance the maximum sparse rate and the minimum error. This paper proposes a convolutional neural network pruning algorithm based on the optimal threshold. The algorithm uses the optimization ability of the greedy algorithm to select an optimal threshold, and uses the sensitivity and correlation of the node as factors to determine whether the node is important. Then by deleting the nodes whose importance is below the optimal threshold, the purpose of pruning the network is achieved. Experiments show that under the premise of loss accuracy within 2%, the algorithm can test the Lenet-5 network pruning on the M-NIST data set, which can accelerate 36.62%. This algorithm tests the VggNet network pruning on the CIFAR-10 dataset, which can speed up 43.86%. Experiments show that the algorithm effectively reduces network parameters and reduces running time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最优阈值的卷积神经网络剪枝算法
在剪枝过程中,为了自动获得一个能平衡最大稀疏率和最小误差的最优剪枝阈值。提出了一种基于最优阈值的卷积神经网络剪枝算法。该算法利用贪心算法的优化能力选择最优阈值,并以节点的敏感性和相关性作为因素来确定节点是否重要。然后通过删除重要性低于最优阈值的节点,达到对网络进行剪枝的目的。实验表明,在损失精度在2%以内的前提下,该算法可以在M-NIST数据集上测试Lenet-5网络修剪,加速率达到36.62%。该算法在CIFAR-10数据集上测试了VggNet网络剪枝,剪枝速度提高了43.86%。实验表明,该算法有效地减少了网络参数,缩短了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Temperature Prediction Model Based on LSTNet in Telecommunication Room Research of particle drilling emergency decision system based on logical reasoning rule Key Technology of Artificial Intelligence in Hull Form Intelligent Optimization Research on Chinese Intent Recognition Based on BERT pre-trained model Manifold Learning for Financial Market Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1