Emily L. Aiken, Guadalupe Bedoya, Aidan Coville, J. Blumenstock
{"title":"Targeting Development Aid with Machine Learning and Mobile Phone Data: Evidence from an Anti-Poverty Intervention in Afghanistan","authors":"Emily L. Aiken, Guadalupe Bedoya, Aidan Coville, J. Blumenstock","doi":"10.1145/3378393.3402274","DOIUrl":null,"url":null,"abstract":"Recent papers demonstrate that non-traditional data, from mobile phones and other digital sensors, can be used to roughly estimate the wealth of individual subscribers. This paper asks a question more directly relevant to development policy: Can non-traditional data be used to more efficiently target development aid? By combining rich survey data from a \"big push\" anti-poverty program in Afghanistan with detailed mobile phone logs from program beneficiaries, we study the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from other households deemed ineligible. We show that supervised learning methods leveraging mobile phone data can identify ultra-poor households as accurately as standard survey-based measures of poverty, including consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source. We discuss the implications and limitations of these methods for targeting extreme poverty in marginalized populations.","PeriodicalId":176951,"journal":{"name":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378393.3402274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Recent papers demonstrate that non-traditional data, from mobile phones and other digital sensors, can be used to roughly estimate the wealth of individual subscribers. This paper asks a question more directly relevant to development policy: Can non-traditional data be used to more efficiently target development aid? By combining rich survey data from a "big push" anti-poverty program in Afghanistan with detailed mobile phone logs from program beneficiaries, we study the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from other households deemed ineligible. We show that supervised learning methods leveraging mobile phone data can identify ultra-poor households as accurately as standard survey-based measures of poverty, including consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source. We discuss the implications and limitations of these methods for targeting extreme poverty in marginalized populations.