Combining MODIS, NCEP/NCAR and DEM Data for Near Land Surface Atmospheric Water Vapor Estimation

Shanzhen Yi, Wenhao Xie, Wenxia Yu
{"title":"Combining MODIS, NCEP/NCAR and DEM Data for Near Land Surface Atmospheric Water Vapor Estimation","authors":"Shanzhen Yi, Wenhao Xie, Wenxia Yu","doi":"10.1109/GEOINFORMATICS.2018.8557043","DOIUrl":null,"url":null,"abstract":"Near land surface atmospheric water vapor content is an import factor for land-atmosphere exchange, evapotranspiration and environment assessment. Currently it is lack of effective method for estimation of near land surface atmospheric water vapor content with a high spatial resolution and a large coverage area. This paper has proposed methods combining MODIS, NCEP/NCAR reanalysis data and DEM data for estimation of the near surface water vapor content. The proposed methods take advantage of NCEP/NCAR stratified pressure level data, MODIS high spatial resolution data, and DEM terrain analysis data for the estimation of near surface water vapor content. The methods are effectiveness and viable for water vapor estimation in high spatial resolution and large coverage area. An example is given for the illustration of the methods.","PeriodicalId":142380,"journal":{"name":"2018 26th International Conference on Geoinformatics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2018.8557043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Near land surface atmospheric water vapor content is an import factor for land-atmosphere exchange, evapotranspiration and environment assessment. Currently it is lack of effective method for estimation of near land surface atmospheric water vapor content with a high spatial resolution and a large coverage area. This paper has proposed methods combining MODIS, NCEP/NCAR reanalysis data and DEM data for estimation of the near surface water vapor content. The proposed methods take advantage of NCEP/NCAR stratified pressure level data, MODIS high spatial resolution data, and DEM terrain analysis data for the estimation of near surface water vapor content. The methods are effectiveness and viable for water vapor estimation in high spatial resolution and large coverage area. An example is given for the illustration of the methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合MODIS、NCEP/NCAR和DEM数据估算近地表大气水汽
近陆面大气水汽含量是陆气交换、蒸散发和环境评价的重要因子。目前还缺乏一种高空间分辨率、大覆盖面积的近地表大气水汽含量估算方法。本文提出了MODIS、NCEP/NCAR再分析数据和DEM数据相结合的近地表水汽含量估算方法。该方法利用NCEP/NCAR分层压力水平数据、MODIS高空间分辨率数据和DEM地形分析数据估算近地表水汽含量。该方法对于高空间分辨率、大覆盖区域的水汽估算是有效可行的。给出了一个例子来说明这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Dynamic Evaluation of Urban Community Livability Based on Multi-Source Spatio-Temporal Data Hotspots Trends and Spatio-Temporal Distributions for an Investigative in the Field of Chinese Educational Technology Congestion Detection and Distribution Pattern Analysis Based on Spatiotemporal Density Clustering Spatial and Temporal Analysis of Educational Development in Yunnan on the Last Two Decades A Top-Down Application of Multi-Resolution Markov Random Fields with Bilateral Information in Semantic Segmentation of Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1