An evolutionary approach to optimize speed controller of DC machines

S. Chowdhuri, A. Mukherjee
{"title":"An evolutionary approach to optimize speed controller of DC machines","authors":"S. Chowdhuri, A. Mukherjee","doi":"10.1109/ICIT.2000.854251","DOIUrl":null,"url":null,"abstract":"The conventional controllers used for DC machines are static and their parameters are fixed through proper design. The classical approach is to use a PID controller with constant parameters after analyzing the stability criterion. The modern approach is to use controllers based on fuzzy logic or other AI techniques. The authors have chosen a speed-tracking problem where a DC machine has to follow a time varying speed demand. The controller coefficients are fixed through an evolutionary algorithm. Representative values of steady state error, maximum overshoot and transient rise time are computed through feature extraction algorithms. Now, the fitness of each member is computed as a fuzzy value based on some predefined fuzzy functions involving the feature values. This fuzzy fitness value governs the selection of coefficients through a genetic algorithm until convergence is obtained. The performance has been studied with various fitness functions and the results are found to be satisfactory.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The conventional controllers used for DC machines are static and their parameters are fixed through proper design. The classical approach is to use a PID controller with constant parameters after analyzing the stability criterion. The modern approach is to use controllers based on fuzzy logic or other AI techniques. The authors have chosen a speed-tracking problem where a DC machine has to follow a time varying speed demand. The controller coefficients are fixed through an evolutionary algorithm. Representative values of steady state error, maximum overshoot and transient rise time are computed through feature extraction algorithms. Now, the fitness of each member is computed as a fuzzy value based on some predefined fuzzy functions involving the feature values. This fuzzy fitness value governs the selection of coefficients through a genetic algorithm until convergence is obtained. The performance has been studied with various fitness functions and the results are found to be satisfactory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种优化直流电机速度控制器的进化方法
传统的直流电机控制器是静态的,通过适当的设计,其参数是固定的。经典的方法是在分析稳定性判据后,采用定参数PID控制器。现代的方法是使用基于模糊逻辑或其他人工智能技术的控制器。作者选择了一个速度跟踪问题,其中直流电机必须遵循随时间变化的速度需求。通过进化算法确定控制器系数。通过特征提取算法计算稳态误差、最大超调量和瞬态上升时间的代表值。现在,每个成员的适应度是基于一些包含特征值的预定义模糊函数计算的模糊值。该模糊适应度值通过遗传算法控制系数的选择,直到得到收敛。用各种适应度函数对其性能进行了研究,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1